Molecular ecology is a field of evolutionary biology that is concerned with applying molecular population genetics, molecular phylogenetics, and more recently genomics to traditional ecological questions (e.g., species diagnosis, conservation and assessment of biodiversity, species-area relationships, and many questions in behavioral ecology). It is virtually synonymous with the field of "Ecological Genetics" as pioneered by Theodosius Dobzhansky, E. B. Ford, Godfrey M. Hewitt, and others. These fields are united in their attempt to study genetic-based questions "out in the field" as opposed to the laboratory. Molecular ecology is related to the field of conservation genetics.
Methods frequently include using microsatellites to determine gene flow and hybridization between populations. The development of molecular ecology is also closely related to the use of DNA microarrays, which allows for the simultaneous analysis of the expression of thousands of different genes. Quantitative PCR may also be used to analyze gene expression as a result of changes in environmental conditions or different responses by differently adapted individuals.
Molecular ecology uses molecular genetic data to answer ecological question related to biogeography, genomics, conservation genetics, and behavioral ecology. Studies mostly use data based on deoxyribonucleic acid sequences (DNA). This approach has been enhanced over a number of years to allow researchers to sequence thousands of genes from a small amount of starting DNA. Allele sizes are another way researchers are able to compare individuals and populations which allows them to quantify the genetic diversity within a population and the genetic similarities among populations.
Molecular ecological techniques are used to study in situ questions of bacterial diversity. Many microorganisms are not easily obtainable as cultured strains in the laboratory, which would allow for identification and characterization. It also stems from the development of PCR technique, which allows for the rapid amplification of genetic material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".
Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism.
A population bottleneck or genetic bottleneck is a sharp reduction in the size of a population due to environmental events such as famines, earthquakes, floods, fires, disease, and droughts; or human activities such as specicide, widespread violence or intentional culling, and human population planning. Such events can reduce the variation in the gene pool of a population; thereafter, a smaller population, with a smaller genetic diversity, remains to pass on genes to future generations of offspring through sexual reproduction.
We present the NaviCatGA package, a versatile genetic algorithm capable of optimizing molecular catalyst structures using well-suited fitness functions to achieve a set of targeted properties. The flexibility and generality of this tool are validated and d ...
Climate change threatens biodiversity and species distribution all over the world at unprecedented rates. Human induced changes to landscape structure and habitat are redefining the relation between species and their environment. Understanding, characteriz ...
EPFL2020
, , , , , , ,
Background: Temperate subalpine lakes recovering from eutrophication in central Europe are experiencing harmful blooms due to the proliferation of Planktothrix rubescens, a potentially toxic cyanobacteria. To optimize the management of cyanobacteria blooms ...