Summary
The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere. Surface gravity is measured in units of acceleration, which, in the SI system, are meters per second squared. It may also be expressed as a multiple of the Earth's standard surface gravity, which is equal to g = 9.80665m/s2 In astrophysics, the surface gravity may be expressed as log g, which is obtained by first expressing the gravity in cgs units, where the unit of acceleration and surface gravity is centimeters per second squared (cm/s2), and then taking the base-10 logarithm of the cgs value of the surface gravity. Therefore, the surface gravity of Earth could be expressed in cgs units as 980.665cm/s2, and then taking the base-10 logarithm ("log g") of 980.665, and we get 2.992 as "log g". The surface gravity of a white dwarf is very high, and of a neutron star even higher. A white dwarf's surface gravity is around 100,000 g (e6m/s2) whilst the neutron star's compactness gives it a surface gravity of up to 7e12m/s2 with typical values of order e12m/s2 (that is more than 1011 times that of Earth). One measure of such immense gravity is that neutron stars have an escape velocity of around 100,000 km/s, about a third of the speed of light. For black holes, the surface gravity must be calculated relativistically. In the Newtonian theory of gravity, the gravitational force exerted by an object is proportional to its mass: an object with twice the mass produces twice as much force. Newtonian gravity also follows an inverse square law, so that moving an object twice as far away divides its gravitational force by four, and moving it ten times as far away divides it by 100.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (28)
Related concepts (16)
Eris (dwarf planet)
Eris (minor-planet designation 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified later that year. In September 2006, it was named after the GrecoRoman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun and the sixteenth-most massive overall in the Solar System (counting moons).
Neptune
Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface.
G-force
The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g (standard gravity force; not gram in mass measurement) equal to the conventional value of gravitational acceleration on Earth, g, of about 9.8m/s2. Since g-forces indirectly produce weight, any g-force can be described as a "weight per unit mass" (see the synonym specific weight).
Show more