Concept# Kinetic energy

Summary

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest. Formally, a kinetic energy is any term in a system's Lagrangian which includes a derivative with respect to time and the second term in a Taylor expansion of a particle's relativistic energy.
In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is \frac{1}{2}mv^2. In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.
The standard unit of kinetic energy is the joule, while the English unit of kinetic energy is the foot-pound.
H

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (100)

Loading

Loading

Loading

Related people (25)

Related concepts (127)

Energy

In physics, energy () is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conser

Physics

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Phy

Momentum

In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, p

Related courses (195)

PHYS-101(en): General physics : mechanics (English)

Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the capacity to quantitatively analyze these effects with the appropriate theoretical tools.

PHYS-101(g): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés.

PHYS-106(b): General physics : thermodynamics

Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés

Related units (15)

This thesis aims to find, for the first time, a direct relation between the size and morphology of small metallic nanostructures (gold in this case) supported on a metal-oxide surface to their catalytic activity. In this perspective, three main topics have been treated during this thesis. The first part concerns the design and realization of a Scanning Tunneling Microscope (STM) supposed to work over a wide temperature range (4K < T ≤ 300K). This new device replaces an existing solution. The coarse approach of the scanning tip towards the sample is realized by an axial motor based on a sapphire prism gliding on shear piezos in the stick&slip mode. The new STM is very rigid moving the resonance frequencies to higher values with respect to the existing solution. Operation of the motor down to T = 8K has been proven, however topographic imaging has been performed only in the temperature range 77K < T ≤ 300K. The second part of this work focuses on a study of the evolution of the morphology of gold nanoparticles on a TiO2(110) surface. Size-selected clusters Aun+ (n = 5, 7) are deposited at a well defined kinetic energy on the surface held at room temperature. Subsequent annealing of the sample has been performed stepwise. After each temperature increase, the morphology has been determined by STM. The evolution as a function of surface temperature has been studied for two different surface reconstructions, TiO2(110)-(1×1) and TiO2(110)-(2×1). The deposition process leads only to small fragmentation and the morphology is stable up to T = 400K. Further increase of the surface temperature leads to sintering of the particles by Ostwald ripening as shown by an exponential decrease of the island density with temperature. The main topic of this thesis, the correlation between morphology and catalytic activity, is described in the last part of this manuscript. For the first time we are able to relate the onset of CO2 production from CO and O2 to a clear change in the morphology. The catalytic activity of the particles strongly depends on their size and dimensionality. The relative activity per particle has been determined and we find a clear maximum for clusters containing 60 atoms and are 3 to 4 monolayers high. These results are discussed in contrast of literature data on the same but also on different metal-oxide surfaces.

The Debye sheath is known to vanish completely in magnetised plasmas for a sufficiently small electron gyroradius and small angle between the magnetic field and the wall. This angle depends on the current onto the wall. When the Debye sheath vanishes, there is still a potential drop between the wall and the plasma across the magnetic presheath. The magnetic field angle corresponding to the predicted sheath collapse is shown to be much smaller than previous estimates, scaling with the electron-ion mass ratio and not with the square root of the mass ratio. This is shown to be a consequence of the kinetic electron and finite ion orbit width effects, which are not captured by fluid models. The wall potential with respect to the bulk plasma at which the Debye sheath vanishes is calculated. Above this wall potential, it is possible that the Debye sheath will invert.

Although pedestrian crossings are supposed to guarantee safety, accidents are still frequent. Prior to implementing any measures to address this issue, the safety of the pedestrian crossing must be assessed. Various indices estimating the safety of pedestrian crossings have been developed. They quantify spatio-temporal distance, potential collision severity or kinetic energy on impact. Computing these indices requires accurate and reliable trajectory data which can be extracted from videos thanks to computer vision algorithms. Like any measurement technology, this process produces imperfections and uncertainty in its output. These errors and uncertainties are scarcely considered in the current index definitions. This project aims to integrate these different measurement uncertainties into the calculation of such indices. Instead of computing a single deterministic value for each index, we propose a methodology providing the index probability distribution under various uncertainties. Further- more, we investigate the influence of each uncertainty on the index distribution. The feasibility and reliability of this method are verified by applying it to an empirical data set. The methodology is validated by comparing the results to state-of-the-art conflict analysis. We observe that the outcome of the indices is strongly conditioned by the quality of the data, in particular the smoothness of the trajectories.

2020Related lectures (651)