Schwartz spaceIn mathematics, Schwartz space is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space of , that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function. Schwartz space is named after French mathematician Laurent Schwartz.
Infrabarrelled spaceIn functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infrabarreled) if every bounded barrel is a neighborhood of the origin. If is a Hausdorff locally convex space then the canonical injection from into its bidual is a topological embedding if and only if is infrabarrelled. Every quasi-complete infrabarrelled space is barrelled. Every barrelled space is infrabarrelled.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
Sequentially completeIn mathematics, specifically in topology and functional analysis, a subspace S of a uniform space X is said to be sequentially complete or semi-complete if every Cauchy sequence in S converges to an element in S. X is called sequentially complete if it is a sequentially complete subset of itself. Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them. A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk.
Nuclear spaceIn mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck. The topology on nuclear spaces can be defined by a family of seminorms whose unit balls decrease rapidly in size.
Distinguished spaceIn functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual. Suppose that is a locally convex space and let and denote the strong dual of (that is, the continuous dual space of endowed with the strong dual topology).
Bornivorous setIn functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of . Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces.