In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as standard logarithm. Historically, it was known as logarithmus decimalis or logarithmus decadis. It is indicated by log(x), log10 (x), or sometimes Log(x) with a capital L (however, this notation is ambiguous, since it can also mean the complex natural logarithmic multi-valued function). On calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when they write "log". To mitigate this ambiguity, the ISO 80000 specification recommends that log10 (x) should be written lg(x), and loge (x) should be ln(x). Before the early 1970s, handheld electronic calculators were not available, and mechanical calculators capable of multiplication were bulky, expensive and not widely available. Instead, tables of base-10 logarithms were used in science, engineering and navigation—when calculations required greater accuracy than could be achieved with a slide rule. By turning multiplication and division to addition and subtraction, use of logarithms avoided laborious and error-prone paper-and-pencil multiplications and divisions. Because logarithms were so useful, tables of base-10 logarithms were given in appendices of many textbooks. Mathematical and navigation handbooks included tables of the logarithms of trigonometric functions as well. For the history of such tables, see log table. An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. Thus, log tables need only show the fractional part. Tables of common logarithms typically listed the mantissa, to four or five decimal places or more, of each number in a range, e.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (12)
MATH-200: Analysis III
Apprendre les bases de l'analyse vectorielle et de l'analyse complexe.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
Show more
Related lectures (48)
Complexity of Algorithms: Advanced Big-O Facts
Covers big-O estimates for factorial function and combinations of functions.
Limit Study: Sinus and Logarithm
Focuses on studying a limit involving sinus and logarithm functions as x approaches positive infinity.
Properties of Entropy
Explores the properties of entropy, including positivity and nullity conditions.
Show more
Related publications (13)

On the Use of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions for the Calculation of Infinite Sums and the Analysis of Zeroes of Analytical Functions

Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
MDPI2023

Redefining Energy Density for an uniaxial Dielectric Elastomer Actuator

Yves Perriard, Yoan René Cyrille Civet, Jonathan André Jean-Marie Chavanne

The dielectric elastomer actuator (DEA) is a technology known to potentially provide high energy density (0.3 - 0.4 J.cm(-3)). However, in the literature, few demonstrations have been done to evaluate this figure. To well understand the ability of this tec ...
IEEE2021

Dating Death: An Empirical Comparison of Medical Underwriters in the U.S. Life Settlements Market

Jiahua Xu

The value of a life settlement investment, manifested through a traded life insurance policy, is highly dependent on the insured's life expectancy (LE). LE estimation in life settlements relies heavily on medical underwriting. Employing different evaluatio ...
2020
Show more
Related concepts (15)
Real number
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Multivalued function
In mathematics, a multivalued function, also called multifunction and many-valued function, is a set-valued function with continuity properties that allow considering it locally as an ordinary function. Multivalued functions arise commonly in applications of the implicit function theorem, since this theorem can be viewed as asserting the existence of a multivalued function. In particular, the inverse function of a differentiable function is a multivalued function, and is single-valued only when the original function is monotonic.
Significant figures
Significant figures (also known as the significant digits, precision or resolution) of a number in positional notation are digits in the number that are reliable and necessary to indicate the quantity of something. If a number expressing the result of a measurement (e.g., length, pressure, volume, or mass) has more digits than the number of digits allowed by the measurement resolution, then only as many digits as allowed by the measurement resolution are reliable, and so only these can be significant figures.
Show more
Related MOOCs (2)
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.