was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multiplication of abelian varieties and Shimura varieties, as well as posing the Taniyama–Shimura conjecture which ultimately led to the proof of Fermat's Last Theorem.
Gorō Shimura was born in Hamamatsu, Japan, on 23 February 1930. Shimura graduated with a B.A. in mathematics and a D.Sc. in mathematics from the University of Tokyo in 1952 and 1958, respectively.
After graduating, Shimura became a lecturer at the University of Tokyo, then worked abroad — including ten months in Paris and a seven-month stint at Princeton's Institute for Advanced Study — before returning to Tokyo, where he married Chikako Ishiguro. He then moved from Tokyo to join the faculty of Osaka University, but growing unhappy with his funding situation, he decided to seek employment in the United States. Through André Weil he obtained a position at Princeton University. Shimura joined the Princeton faculty in 1964 and retired in 1999, during which time he advised over 28 doctoral students and received the Guggenheim Fellowship in 1970, the Cole Prize for number theory in 1977, the Asahi Prize in 1991, and the Steele Prize for lifetime achievement in 1996.
Shimura described his approach to mathematics as "phenomenological": his interest was in finding new types of interesting behavior in the theory of automorphic forms. He also argued for a "romantic" approach, something he found lacking in the younger generation of mathematicians. Shimura used a two-part process for research, using one desk in his home dedicated to working on new research in the mornings and a second desk for perfecting papers in the afternoon.
Shimura had two children, Tomoko and Haru, with his wife Chikako. Shimura died on 3 May 2019 in Princeton, New Jersey at the age of 89.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in the margin.
Robert Phelan Langlands, (ˈlæŋləndz; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He was an emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired.
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice. It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points.
We define and study in terms of integral IwahoriâHecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...
EPFL2019
We derive a Motohashi-type formula for the cubic moment of central values of -functions of level cusp forms twisted by quadratic characters of conductor , previously studied by Conrey and Iwaniec and Young. Corollaries of this formula include Weyl-subconve ...
We construct "generalized Heegner cycles" on a variety fibered over a Shimura curve, defined over a number field. We show that their images under the p-adic Abel-Jacobi map coincide with the values (outside the range of interpolation) of a p-adic L-functio ...