Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The main goal of this paper is to formalize and explore a connection between chromatic properties of graphs defined by geometric representations and competitivity analysis of on-line algorithms. This connection became apparent after the recent construction ...
The intersection graph of a collection C of sets is the graph on the vertex set C, in which C-1 . C-2 is an element of C are joined by an edge if and only if C-1 boolean AND C-2 not equal empty set. Erdos conjectured that the chromatic number of triangle-f ...
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand) ...
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the ...
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free fam ...
Given a graph G with nonnegative node labels w, a multiset of stable sets S_1,...,S_k\subseteq V(G) such that each vertex v \in V(G) is contained in w(v) many of these stable sets is called a weighted coloring. The weighted coloring number \chi_w(G) is the ...
A string graph is the intersection graph of a collection of continuous arcs in the plane. We show that any string graph with in edges can be separated into two parts of roughly equal size by the removal of O(m(3/4)root log m) vertices. This result is then ...
Computing the weighted coloring number of graphs is a classical topic in combinatorics and graph theory. Recently these problems have again attracted a lot of attention for the class of quasi-line graphs and more specifically fuzzy circular interval graphs ...
We study complexity and approximation of MIN WEIGHTED NODE COLORING in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove ...