Summary
Mineral wool is any fibrous material formed by spinning or drawing molten mineral or rock materials such as slag and ceramics. Applications of mineral wool include thermal insulation (as both structural insulation and pipe insulation), filtration, soundproofing, and hydroponic growth medium. Mineral wool is also known as mineral fiber, mineral cotton, mineral fiber, man-made mineral fiber (MMMF), and man-made vitreous fiber (MMVF). Specific mineral wool products are stone wool and slag wool. Europe also includes glass wool which, together with ceramic fiber, are entirely artificial fibers that can be made into different shapes and are spiky to touch. Slag wool was first made in 1840 in Wales by Edward Parry, "but no effort appears to have been made to confine the wool after production; consequently it floated about the works with the slightest breeze, and became so injurious to the men that the process had to be abandoned". A method of making mineral wool was patented in the United States in 1870 by John Player and first produced commercially in 1871 at Georgsmarienhütte in Osnabrück Germany. The process involved blowing a strong stream of air across a falling flow of liquid iron slag which was similar to the natural occurrence of fine strands of volcanic slag from Kilauea called Pele's hair created by strong winds blowing apart the slag during an eruption. According to a mineral wool manufacturer, the first mineral wool intended for high-temperature applications was invented in the United States in 1942 but was not commercially viable until approximately 1953. More forms of mineral wool became available in the 1970s and 1980s. High-temperature mineral wool is a type of mineral wool created for use as high-temperature insulation and generally defined as being resistant to temperatures above 1,000 °C. This type of insulation is usually used in industrial furnaces and foundries. Because high-temperature mineral wool is costly to produce and has limited availability, it is almost exclusively used in high-temperature industrial applications and processes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.