Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maximum condensation in late anaphase, to help chromosome segregation and the re-formation of the nucleus.
Anaphase starts when the anaphase promoting complex marks an inhibitory chaperone called securin for destruction by ubiquitylating it. Securin is a protein which inhibits a protease known as separase. The destruction of securin unleashes separase which then breaks down cohesin, a protein responsible for holding sister chromatids together.
At this point, three subclasses of microtubule unique to mitosis are involved in creating the forces necessary to separate the chromatids: kinetochore microtubules, interpolar microtubules, and astral microtubules.
The centromeres are split, and the sister chromatids are pulled toward the poles by kinetochore microtubules. They take on a V-shape or Y-shape as they are pulled to either pole.
While the chromosomes are drawn to each side of the cell, interpolar microtubules and astral microtubules generate forces that stretch the cell into an oval.
Once anaphase is complete, the cell moves into telophase.
Anaphase is characterized by two distinct motions. The first of these, anaphase A, moves chromosomes to either pole of a dividing cell (marked by centrosomes, from which mitotic microtubules are generated and organised). The movement for this is primarily generated by the action of kinetochores, and a subclass of microtubule called kinetochore microtubules.
The second motion, anaphase B, involves the separation of these poles from each other. The movement for this is primarily generated by the action of interpolar microtubules and astral microtubules.
A combination of different forces have been observed acting on chromatids in anaphase A, but the primary force is exerted centrally. Microtubules attach to the midpoint of chromosomes (the centromere) via protein complexes (kinetochores).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell. Besides chromosomes, the spindle apparatus is composed of hundreds of proteins.
Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle in which chromosomes are at their second-most condensed and coiled stage (they are at their most condensed in anaphase). These chromosomes, carrying genetic information, align in the equator of the cell before being separated into each of the two daughter cells. Metaphase accounts for approximately 4% of the cell cycle's duration. Preceded by events in prometaphase and followed by anaphase, microtubules formed in prophase have already found and attached themselves to kinetochores in metaphase.
Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus. Microscopy can be used to visualize condensed chromosomes as they move through meiosis and mitosis. Various DNA stains are used to treat cells such that condensing chromosomes can be visualized as the move through prophase.
Two fundamental properties of embryonic stem cells (ESCs) are their ability to self-renew and differentiate into all somatic cell types. Maintenance of their identity faces major challenges when transitioning through mitosis, as most DNA-binding proteins a ...
All cells need to be able to sense their environment, and adapt their metabolism, growth and cell division appropriately. In this study, I examined the response of Schizosaccharomyces pombe to a change in the carbon source and how that affects cytokinesis. ...
All cells need to be able to sense their environment, and adapt their metabolism, growth and cell division appropriately. In this study, I examined the response of Schizosaccharomyces pombe to a change in the carbon source and how that affects cytokinesis. ...