Summary
Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maximum condensation in late anaphase, to help chromosome segregation and the re-formation of the nucleus. Anaphase starts when the anaphase promoting complex marks an inhibitory chaperone called securin for destruction by ubiquitylating it. Securin is a protein which inhibits a protease known as separase. The destruction of securin unleashes separase which then breaks down cohesin, a protein responsible for holding sister chromatids together. At this point, three subclasses of microtubule unique to mitosis are involved in creating the forces necessary to separate the chromatids: kinetochore microtubules, interpolar microtubules, and astral microtubules. The centromeres are split, and the sister chromatids are pulled toward the poles by kinetochore microtubules. They take on a V-shape or Y-shape as they are pulled to either pole. While the chromosomes are drawn to each side of the cell, interpolar microtubules and astral microtubules generate forces that stretch the cell into an oval. Once anaphase is complete, the cell moves into telophase. Anaphase is characterized by two distinct motions. The first of these, anaphase A, moves chromosomes to either pole of a dividing cell (marked by centrosomes, from which mitotic microtubules are generated and organised). The movement for this is primarily generated by the action of kinetochores, and a subclass of microtubule called kinetochore microtubules. The second motion, anaphase B, involves the separation of these poles from each other. The movement for this is primarily generated by the action of interpolar microtubules and astral microtubules. A combination of different forces have been observed acting on chromatids in anaphase A, but the primary force is exerted centrally. Microtubules attach to the midpoint of chromosomes (the centromere) via protein complexes (kinetochores).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (5)
BIO-221: Cell and developmental biology for engineers
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
BIOENG-110: General Biology
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
Show more