In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(a, b), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a, 0) as 0 for all a, since 0 is the only common multiple of a and 0.
The least common multiple of the denominators of two fractions is the "lowest common denominator" (lcd), and can be used for adding, subtracting or comparing the fractions.
The least common multiple of more than two integers a, b, c, . . . , usually denoted by lcm(a, b, c, . . .), is defined as the smallest positive integer that is divisible by each of a, b, c, . . .
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.
The least common multiple of two integers a and b is denoted as lcm(a, b). Some older textbooks use [a, b].
Multiples of 4 are:
Multiples of 6 are:
Common multiples of 4 and 6 are the numbers that are in both lists:
In this list, the smallest number is 12. Hence, the least common multiple is 12.
When adding, subtracting, or comparing simple fractions, the least common multiple of the denominators (often called the lowest common denominator) is used, because each of the fractions can be expressed as a fraction with this denominator. For example,
where the denominator 42 was used, because it is the least common multiple of 21 and 6.
Suppose there are two meshing gears in a machine, having m and n teeth, respectively, and the gears are marked by a line segment drawn from the center of the first gear to the center of the second gear.