A phase-change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat or cooling. Generally the transition will be from one of the first two fundamental states of matter - solid and liquid - to the other. The phase transition may also be between non-classical states of matter, such as the conformity of crystals, where the material goes from conforming to one crystalline structure to conforming to another, which may be a higher or lower energy state. The energy released/absorbed by phase transition from solid to liquid, or vice versa, the heat of fusion is generally much higher than the sensible heat. Ice, for example, requires 333.55 J/g to melt, but then water will rise one degree further with the addition of just 4.18 J/g. Water/ice is therefore a very useful phase change material and has been used to store winter cold to cool buildings in summer since at least the time of the Achaemenid Empire. By melting and solidifying at the phase-change temperature (PCT), a PCM is capable of storing and releasing large amounts of energy compared to sensible heat storage. Heat is absorbed or released when the material changes from solid to liquid and vice versa or when the internal structure of the material changes; PCMs are accordingly referred to as latent heat storage (LHS) materials. There are two principal classes of phase-change material: organic (carbon-containing) materials derived either from petroleum, from plants or from animals; and salt hydrates, which generally either use natural salts from the sea or from mineral deposits or are by-products of other processes. A third class is solid to solid phase change. PCMs are used in many different commercial applications where energy storage and/or stable temperatures are required, including, among others, heating pads, cooling for telephone switching boxes, and clothing. By far the biggest potential market is for building heating and cooling.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (15)
Thermal Storage: Sensible and Latent
Explores sensible and latent thermal storage in energy systems with examples from Italy and the USA.
Heat Transfer Fundamentals
Explores heat transfer principles, laws of thermodynamics, and thermal system evolution.
Internal Energy and Specific Heat
Covers the calculation of internal energy and specific heat for gases, electrons, phonons, and photons.
Show more
Related publications (65)

Recyclable flame retardant phosphonated epoxy based thermosets enabled via a reactive approach

Véronique Michaud, Valentin Rougier

The development of reusable fire-safe polymers with a prolonged lifetime heralds the switch for a transition towards circular economy. In this framework, we report a novel phosphonated thermoset which is composed of networked phosphonate esters containing ...
ELSEVIER SCIENCE SA2023

Multi-Scale Study of High-Temperature Latent Heat Storage With Metallic Phase Change Materials

Nithin Mallya

Energy storage is a central issue in the green economy with half the global end energy usage being heat. Latent heat thermal energy storage (LHTES) provides an energy dense heat storage solution with a well-defined discharge temperature. Utilizing low-cost ...
EPFL2022

Multi-configuration evaluation of a megajoule-scale high-temperature latent thermal test-bed

Sophia Haussener, Clemens Gregor Suter, Selmar Rudolf Binder, Nithin Mallya, Alberto Ortona, Maurizio Barbato

Thermal energy storage via latent heat provides an energy dense solution and, during discharge, a hot stream at a well-defined temperature. Utilizing metal phase change materials (PCMs) and high-temperature operation might enable fast (dis)charging and app ...
PERGAMON-ELSEVIER SCIENCE LTD2022
Show more
Related concepts (6)
Thermal management (electronics)
All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.
Waste heat
Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.
Thermal energy storage
Thermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning (Seasonal thermal energy storage).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.