Apeirogonal prismIn geometry, an apeirogonal prism or infinite prism is the arithmetic limit of the family of prisms; it can be considered an infinite polyhedron or a tiling of the plane. Thorold Gosset called it a 2-dimensional semi-check, like a single row of a checkerboard. If the sides are squares, it is a uniform tiling. If colored with two sets of alternating squares it is still uniform. File:Infinite prism alternating.svg|Uniform variant with alternate colored square faces. File:Infinite_bipyramid.
Order-2 apeirogonal tilingIn geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedron is a tiling of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol {∞, 2}. Two apeirogons, joined along all their edges, can completely fill the entire plane as an apeirogon is infinite in size and has an interior angle of 180°, which is half of a full 360°. The apeirogonal tiling is the arithmetic limit of the family of dihedra {p, 2}, as p tends to infinity, thereby turning the dihedron into a Euclidean tiling.
ApeirogonIn geometry, an apeirogon () or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries. Given a point A0 in a Euclidean space and a translation S, define the point Ai to be the point obtained from i applications of the translation S to A0, so Ai = Si(A0).
Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.