Concept

Ghost imaging

Summary
Ghost imaging (also called "coincidence imaging", "two-photon imaging" or "correlated-photon imaging") is a technique that produces an of an object by combining information from two light detectors: a conventional, multi-pixel detector that doesn't view the object, and a single-pixel (bucket) detector that does view the object. Two techniques have been demonstrated. A quantum method uses a source of pairs of entangled photons, each pair shared between the two detectors, while a classical method uses a pair of correlated coherent beams without exploiting entanglement. Both approaches may be understood within the framework of a single theory. History The first demonstration of ghost imaging, performed by T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko in 1995, was based on quantum correlations between entangled photon pairs. One of the photons of the pair strikes the object and then the bucket detector while the other follows a different path to a (multi-p
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading