Summary
Regression dilution, also known as regression attenuation, is the biasing of the linear regression slope towards zero (the underestimation of its absolute value), caused by errors in the independent variable. Consider fitting a straight line for the relationship of an outcome variable y to a predictor variable x, and estimating the slope of the line. Statistical variability, measurement error or random noise in the y variable causes uncertainty in the estimated slope, but not bias: on average, the procedure calculates the right slope. However, variability, measurement error or random noise in the x variable causes bias in the estimated slope (as well as imprecision). The greater the variance in the x measurement, the closer the estimated slope must approach zero instead of the true value. It may seem counter-intuitive that noise in the predictor variable x induces a bias, but noise in the outcome variable y does not. Recall that linear regression is not symmetric: the line of best fit for predicting y from x (the usual linear regression) is not the same as the line of best fit for predicting x from y. Regression slope and other regression coefficients can be disattenuated as follows. The case that x is fixed, but measured with noise, is known as the functional model or functional relationship. It can be corrected using total least squares and errors-in-variables models in general. The case that the x variable arises randomly is known as the structural model or structural relationship. For example, in a medical study patients are recruited as a sample from a population, and their characteristics such as blood pressure may be viewed as arising from a random sample. Under certain assumptions (typically, normal distribution assumptions) there is a known ratio between the true slope, and the expected estimated slope. Frost and Thompson (2000) review several methods for estimating this ratio and hence correcting the estimated slope.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.