Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We probe the accuracy of linear ridge regression employing a three-body local density representation derived from the atomic cluster expansion. We benchmark the accuracy of this framework in the prediction of formation energies and atomic forces in molecules and solids. We find that such a simple regression framework performs on par with state-of-the-art machine learning methods which are, in most cases, more complex and more computationally demanding. Subsequently, we look for ways to sparsify the descriptor and further improve the computational efficiency of the method. To this aim, we use both principal component analysis and least absolute shrinkage operator regression for energy fitting on six single-element datasets. Both methods highlight the possibility of constructing a descriptor that is four times smaller than the original with a similar or even improved accuracy. Furthermore, we find that the reduced descriptors share a sizable fraction of their features across the six independent datasets, hinting at the possibility of designing material-agnostic, optimally compressed, and accurate descriptors.
Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui
Michele Ceriotti, Alberto Fabrizio, Benjamin André René Meyer, Edgar Albert Engel, Raimon Fabregat I De Aguilar-Amat, Veronika Juraskova