A variable-frequency drive (VFD, or adjustable-frequency drives, adjustable-speed drives), variable-speed drives, AC drives, micro drives, inverter drives, or drives) is a type of AC motor drive (system incorporating a motor) that controls speed and torque by varying the frequency of the input electricity. Depending on its topology, it controls the associated voltage or current variation.
VFDs are used in applications ranging from small appliances to large compressors. Systems using VFDs can be more efficient than hydraulic systems, such as in systems with pumps and damper control for fans.
Since the 1980s, power electronics technology has reduced VFD cost and size and has improved performance through advances in semiconductor switching devices, drive topologies, simulation and control techniques, and control hardware and software.
VFDs include low- and medium-voltage AC-AC and DC-AC topologies.
Pulse Width Modulating (PWM) variable frequency drive project started in the 1960s at Strömberg in Finland. Martti Harmoinen is regarded the inventor of this technology. Strömberg managed to sell the idea of PWM drive to Helsinki metro in 1973 and in 1982 first PWM drive SAMI10 were operational.
A variable-frequency drive is a device used in a drive system consisting of the following three main sub-systems: AC motor, main drive controller assembly, and drive/operator interface.
The AC electric motor used in a VFD system is usually a three-phase induction motor. Some types of single-phase motors or synchronous motors can be advantageous in some situations, but generally three-phase induction motors are preferred as the most economical. Motors that are designed for fixed-speed operation are often used. Elevated-voltage stresses imposed on induction motors that are supplied by VFDs require that such motors be designed for definite-purpose inverter-fed duty in accordance with such requirements as Part 31 of NEMA Standard MG-1.
The VFD controller is a solid-state power electronics conversion system consisting of three distinct sub-systems: a rectifier bridge converter, a direct current (DC) link, and an inverter.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Power electronics is the application of electronics to the control and conversion of electric power. The first high-power electronic devices were made using mercury-arc valves. In modern systems, the conversion is performed with semiconductor switching devices such as diodes, thyristors, and power transistors such as the power MOSFET and IGBT. In contrast to electronic systems concerned with the transmission and processing of signals and data, substantial amounts of electrical energy are processed in power electronics.
A motor controller is a device or group of devices that can coordinate in a predetermined manner the performance of an electric motor. A motor controller might include a manual or automatic means for starting and stopping the motor, selecting forward or reverse rotation, selecting and regulating the speed, regulating or limiting the torque, and protecting against overloads and electrical faults. Motor controllers may use electromechanical switching, or may use power electronics devices to regulate the speed and direction of a motor.
Doubly fed electric machines, also slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine. By feeding adjustable frequency AC power to the field windings, the magnetic field can be made to rotate, allowing variation in motor or generator speed. This is useful, for instance, for generators used in wind turbines.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
The goal of the course is to present fundamentals of power electronics. The key focus is on the operating principles of power electronic converters, their modelling, sizing and design.
L'objectif de ce cours est d'introduire les systèmes et outils liés à la conversion d'énergie, en se référant au contexte particulier de la production d'énergie électrique, qu'elle soit conventionnell
The course is dealing with high performance drives and methods to control various electrical machines by means of power electronic converter and advanced control methods.
Solid-State Transformers with Input-Series/Output-Parallel configuration offer a convenient solution for AC/DC conversion due to their scalability and modularity. In this configuration, each module experiences a second-order harmonic ripple caused by local ...
This PhD thesis is framed within the XFLEX HYDRO project, funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 857832. The ultimate objective of the XFLEX HYDRO project is to increase hydropower potential in ...
This paper proposes a generic and unified model of the power flow (PF) problem for multiterminal hybrid AC/DC networks. The proposed model is an extension of the standard AC-PF. The DC network is treated as an AC one and, in addition to the Slack, PV and P ...