Related concepts (25)
Machine code
In computer programming, machine code is computer code consisting of machine language instructions, which are used to control a computer's central processing unit (CPU). Although decimal computers were once common, the contemporary marketplace is dominated by binary computers; for those computers, machine code is "the binary representation of a computer program which is actually read and interpreted by the computer. A program in machine code consists of a sequence of machine instructions (possibly interspersed with data).
Executable
In computing, executable code, an executable file, or an executable program, sometimes simply referred to as an executable or binary, causes a computer "to perform indicated tasks according to encoded instructions", as opposed to a data file that must be interpreted (parsed) by a program to be meaningful. The exact interpretation depends upon the use. "Instructions" is traditionally taken to mean machine code instructions for a physical CPU. In some contexts, a file containing scripting instructions (such as bytecode) may also be considered executable.
Object code
In computing, object code or object module is the product of a compiler. In a general sense object code is a sequence of statements or instructions in a computer language, usually a machine code language (i.e., ) or an intermediate language such as register transfer language (RTL). The term indicates that the code is the goal or result of the compiling process, with some early sources referring to source code as a "subject program". s can in turn be linked to form an or library file.
Static library
In computer science, a static library or statically-linked library is a set of routines, external functions and variables which are resolved in a caller at compile-time and copied into a target application by a compiler, linker, or binder, producing an and a stand-alone executable. This executable and the process of compiling it are both known as a static build of the program. Historically, libraries could only be static.
Virtual memory
In computing, virtual memory, or virtual storage, is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" which "creates the illusion to users of a very large (main) memory". The computer's operating system, using a combination of hardware and software, maps memory addresses used by a program, called virtual addresses, into physical addresses in computer memory.
DLL Hell
In computing, DLL Hell is a term for the complications that arise when one works with dynamic-link libraries (DLLs) used with Microsoft Windows operating systems, particularly legacy 16-bit editions, which all run in a single memory space. DLL Hell can manifest itself in many different ways wherein applications neither launch nor work correctly. DLL Hell is the Windows ecosystem-specific form of the general concept dependency hell. DLLs are Microsoft's implementation of shared libraries.
Software portability
A computer program is said to be portable if there is very low effort required to make it run on different platforms. The pre-requirement for portability is the generalized abstraction between the application logic and system interfaces. When software with the same functionality is produced for several computing platforms, portability is the key issue for development cost reduction. Software portability may involve: Transferring installed program files to another computer of basically the same architecture.
Dynamic loading
Dynamic loading is a mechanism by which a computer program can, at run time, load a library (or other ) into memory, retrieve the addresses of functions and variables contained in the library, execute those functions or access those variables, and unload the library from memory. It is one of the 3 mechanisms by which a computer program can use some other software; the other two are static linking and dynamic linking.
Runtime library
In computer programming, a runtime library is a set of low-level routines used by a compiler to invoke some of the behaviors of a runtime environment, by inserting calls to the runtime library into compiled executable binary. The runtime environment implements the execution model, built-in functions, and other fundamental behaviors of a programming language. During execution (run time) of that computer program, execution of those calls to the runtime library cause communication between the executable binary and the runtime environment.
Position-independent code
In computing, position-independent code (PIC) or position-independent executable (PIE) is a body of machine code that, being placed somewhere in the primary memory, executes properly regardless of its absolute address. PIC is commonly used for shared libraries, so that the same library code can be loaded at a location in each program's address space where it does not overlap with other memory in use by, for example, other shared libraries.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.