Quadratic reciprocityIn number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is: Let p and q be distinct odd prime numbers, and define the Legendre symbol as: Then: This law, together with its supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form for an odd prime ; that is, to determine the "perfect squares" modulo .
Jacobi symbolJacobi symbol k/n for various k (along top) and n (along left side). Only 0 ≤ k < n are shown, since due to rule (2) below any other k can be reduced modulo n. Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if k is a quadratic residue modulo a coprime n, then k/n = 1, but not all entries with a Jacobi symbol of 1 (see the n = 9 and n = 15 rows) are quadratic residues. Notice also that when either n or k is a square, all values are nonnegative.
Algebraic number theoryAlgebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
Quadratic residueIn number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that: Otherwise, q is called a quadratic nonresidue modulo n. Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers.
Euler's criterionIn number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely, Let p be an odd prime and a be an integer coprime to p. Then Euler's criterion can be concisely reformulated using the Legendre symbol: The criterion first appeared in a 1748 paper by Leonhard Euler. The proof uses the fact that the residue classes modulo a prime number are a field. See the article prime field for more details.
Quartic reciprocityQuartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4 ≡ p (mod q) to that of x4 ≡ q (mod p). Euler made the first conjectures about biquadratic reciprocity. Gauss published two monographs on biquadratic reciprocity.
Gauss's lemma (number theory)Gauss's lemma in number theory gives a condition for an integer to be a quadratic residue. Although it is not useful computationally, it has theoretical significance, being involved in some proofs of quadratic reciprocity. It made its first appearance in Carl Friedrich Gauss's third proof (1808) of quadratic reciprocity and he proved it again in his fifth proof (1818). For any odd prime p let a be an integer that is coprime to p. Consider the integers and their least positive residues modulo p.
Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.
Primality testA primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy (its running time is polynomial in the size of the input).
Kronecker symbolIn number theory, the Kronecker symbol, written as or , is a generalization of the Jacobi symbol to all integers . It was introduced by . Let be a non-zero integer, with prime factorization where is a unit (i.e., ), and the are primes. Let be an integer. The Kronecker symbol is defined by For odd , the number is simply the usual Legendre symbol. This leaves the case when . We define by Since it extends the Jacobi symbol, the quantity is simply when .