Concept

Uniform coloring

In geometry, a uniform coloring is a property of a uniform figure (uniform tiling or uniform polyhedron) that is colored to be vertex-transitive. Different symmetries can be expressed on the same geometric figure with the faces following different uniform color patterns. A uniform coloring can be specified by listing the different colors with indices around a vertex figure. In addition, an n-uniform coloring is a property of a uniform figure which has n types vertex figure, that are collectively vertex transitive. A related term is Archimedean color requires one vertex figure coloring repeated in a periodic arrangement. A more general term are k-Archimedean colorings which count k distinctly colored vertex figures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.