Closure (mathematics)In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a collection of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset.
François VièteFrançois Viète, Seigneur de la Bigotière (Franciscus Vieta; 1540 – 23 February 1603), commonly known by his mononym, Vieta, was a French mathematician whose work on new algebra was an important step towards modern algebra, due to his innovative use of letters as parameters in equations. He was a lawyer by trade, and served as a privy councillor to both Henry III and Henry IV of France. Viète was born at Fontenay-le-Comte in present-day Vendée. His grandfather was a merchant from La Rochelle.
Polynomial long divisionIn algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method).
Bring radicalIn algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial The Bring radical of a complex number a is either any of the five roots of the above polynomial (it is thus multi-valued), or a specific root, which is usually chosen such that the Bring radical is real-valued for real a and is an analytic function in a neighborhood of the real line. Because of the existence of four branch points, the Bring radical cannot be defined as a function that is continuous over the whole complex plane, and its domain of continuity must exclude four branch cuts.
Mathematics educationIn contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out scholarly research into the transfer of mathematical knowledge. Although research into mathematics education is primarily concerned with the tools, methods, and approaches that facilitate practice or the study of practice, it also covers an extensive field of study encompassing a variety of different concepts, theories and methods.
Monad (category theory)In , a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a in the of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.
Variable (mathematics)In mathematics, a variable (from Latin variabilis, "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula.
Algebraic equationIn mathematics, an algebraic equation or polynomial equation is an equation of the form where P is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term algebraic equation refers only to univariate equations, that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the multivariate case), the term polynomial equation is usually preferred to algebraic equation.
Algebraic expressionIn mathematics, an algebraic expression is an expression built up from constant algebraic numbers, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression: An algebraic equation is an equation involving only algebraic expressions.
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.