Algebraic operationIn mathematics, a basic algebraic operation is any one of the common operations of arithmetic, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). These operations may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields.
Theory of equationsIn algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra".
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Symmetric algebraIn mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V).
History of algebraAlgebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property).