Concept

# Monad (category theory)

Summary
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)
Related concepts (27)
In , a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a in the of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.
Algebra
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Variety (universal algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products.
Related courses (10)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-687: Algebraic models for homotopy types
ln this course we will develop algebraic and coalgebraic models for homotopy types. Among other things we will learn about Quillen's and Sullivan's model of rationâl homotopy types and about Mandell's
Related lectures (129)
Fixed Points and Orbits Analysis: Group ActionsMATH-211: Group Theory
Explores the definition of orbits and fixed points of a G-object in any category, focusing on G-equivariant applications.
Triangular IdentitiesMATH-211: Group Theory
Covers triangular identities, natural transformations, commutative diagrams, and adjunction notation in group and category theory.
Mutually Inverse Alpha and BetaMATH-211: Group Theory
Explores adjunctions and mutual inverses alpha and beta in category theory.