In mathematics, and more specifically in computer algebra and elimination theory, a regular chain is a particular kind of triangular set of multivariate polynomials over a field, where a triangular set is a finite sequence of polynomials such that each one contains at least one more indeterminate than the preceding one. The condition that a triangular set must satisfy to be a regular chain is that, for every k, every common zero (in an algebraically closed field) of the k first polynomials may be prolongated to a common zero of the (k + 1)th polynomial. In other words, regular chains allow solving systems of polynomial equations by solving successive univariate equations without considering different cases.
Regular chains enhance the notion of Wu's characteristic sets in the sense that they provide a better result with a similar method of computation.
Given a linear system, one can convert it to a triangular system via Gaussian elimination. For the non-linear case, given a polynomial system F over a field, one can convert (decompose or triangularize) it to a finite set of triangular sets, in the sense that the algebraic variety V(F) is described by these triangular sets.
A triangular set may merely describe the empty set. To fix this degenerated case, the notion of regular chain was introduced, independently by Kalkbrener (1993), Yang and Zhang (1994). Regular chains also appear in Chou and Gao (1992). Regular chains are special triangular sets which are used in different algorithms for computing unmixed-dimensional decompositions of algebraic varieties. Without using factorization, these decompositions have better properties that the ones produced by Wu's algorithm. Kalkbrener's original definition was based on the following observation: every irreducible variety is uniquely determined by one of its generic points and varieties can be represented by describing the generic points of their irreducible components. These generic points are given by regular chains.
Denote Q the rational number field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers.
In commutative algebra and algebraic geometry, elimination theory is the classical name for algorithmic approaches to eliminating some variables between polynomials of several variables, in order to solve systems of polynomial equations. Classical elimination theory culminated with the work of Francis Macaulay on multivariate resultants, as described in the chapter on Elimination theory in the first editions (1930) of Bartel van der Waerden's Moderne Algebra.
In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite.
Covers solving linear equations, focusing on systems with zero, one, or infinite solutions, and introduces matrices as a powerful tool for efficient solution.
Covers the Lagrange polynomial interpolation method and error analysis in function approximation.
Let k be an algebraically closed field. Let P(X-11,...,X-nn, T) be the characteristic polynomial of the generic matrix (X-ij) over k. We determine its singular locus as well as the singular locus of its Galois splitting. If X is a smooth quasi-projective s ...
We devise a Hybrid High-Order (HHO) method for highly oscillatory elliptic problems that is capable of handling general meshes. The method hinges on discrete unknowns that are polynomials attached to the faces and cells of a coarse mesh; those attached to ...
In this paper, we prove a strengthening of the generic vanishing result in characteristic p > 0 given in Hacon and Patakfalvi (Am J Math 138(4):963-998, 2016). As a consequence of this result, we show that irreducible Theta divisors are strongly F-regular ...