In mathematics, and more specifically in computer algebra and elimination theory, a regular chain is a particular kind of triangular set of multivariate polynomials over a field, where a triangular set is a finite sequence of polynomials such that each one contains at least one more indeterminate than the preceding one. The condition that a triangular set must satisfy to be a regular chain is that, for every k, every common zero (in an algebraically closed field) of the k first polynomials may be prolongated to a common zero of the (k + 1)th polynomial. In other words, regular chains allow solving systems of polynomial equations by solving successive univariate equations without considering different cases.
Regular chains enhance the notion of Wu's characteristic sets in the sense that they provide a better result with a similar method of computation.
Given a linear system, one can convert it to a triangular system via Gaussian elimination. For the non-linear case, given a polynomial system F over a field, one can convert (decompose or triangularize) it to a finite set of triangular sets, in the sense that the algebraic variety V(F) is described by these triangular sets.
A triangular set may merely describe the empty set. To fix this degenerated case, the notion of regular chain was introduced, independently by Kalkbrener (1993), Yang and Zhang (1994). Regular chains also appear in Chou and Gao (1992). Regular chains are special triangular sets which are used in different algorithms for computing unmixed-dimensional decompositions of algebraic varieties. Without using factorization, these decompositions have better properties that the ones produced by Wu's algorithm. Kalkbrener's original definition was based on the following observation: every irreducible variety is uniquely determined by one of its generic points and varieties can be represented by describing the generic points of their irreducible components. These generic points are given by regular chains.
Denote Q the rational number field.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau).
En algèbre commutative et en géométrie algébrique, la théorie de l'élimination traite de l'approche algorithmique de l'élimination de variables entre polynômes. Le cas linéaire est maintenant couramment traité par élimination de Gauss, plus efficace que la méthode de Cramer. De même, des algorithmes d'élimination s'appuient sur des calculs de bases de Gröbner, alors qu'il existe des publications anciennes sur divers types d'« éliminants », comme le résultant pour trouver les racines communes à deux polynômes, le discriminant, etc.
En mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Couvre la résolution d'équations linéaires, en se concentrant sur des systèmes avec zéro, une ou des solutions infinies, et introduit des matrices comme un outil puissant pour une solution efficace.
In this paper, we prove a strengthening of the generic vanishing result in characteristic p > 0 given in Hacon and Patakfalvi (Am J Math 138(4):963-998, 2016). As a consequence of this result, we show that irreducible Theta divisors are strongly F-regular ...
SPRINGER INTERNATIONAL PUBLISHING AG2021
We devise a Hybrid High-Order (HHO) method for highly oscillatory elliptic problems that is capable of handling general meshes. The method hinges on discrete unknowns that are polynomials attached to the faces and cells of a coarse mesh; those attached to ...
WALTER DE GRUYTER GMBH2019
Let k be an algebraically closed field. Let P(X-11,...,X-nn, T) be the characteristic polynomial of the generic matrix (X-ij) over k. We determine its singular locus as well as the singular locus of its Galois splitting. If X is a smooth quasi-projective s ...