In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain close even if slightly disturbed.
In finite-dimensional systems, the evolving variable may be represented algebraically as an n-dimensional vector. The attractor is a region in n-dimensional space. In physical systems, the n dimensions may be, for example, two or three positional coordinates for each of one or more physical entities; in economic systems, they may be separate variables such as the inflation rate and the unemployment rate.
If the evolving variable is two- or three-dimensional, the attractor of the dynamic process can be represented geometrically in two or three dimensions, (as for example in the three-dimensional case depicted to the right). An attractor can be a point, a finite set of points, a curve, a manifold, or even a complicated set with a fractal structure known as a strange attractor (see strange attractor below). If the variable is a scalar, the attractor is a subset of the real number line. Describing the attractors of chaotic dynamical systems has been one of the achievements of chaos theory.
A trajectory of the dynamical system in the attractor does not have to satisfy any special constraints except for remaining on the attractor, forward in time. The trajectory may be periodic or chaotic. If a set of points is periodic or chaotic, but the flow in the neighborhood is away from the set, the set is not an attractor, but instead is called a repeller (or repellor).
A dynamical system is generally described by one or more differential or difference equations. The equations of a given dynamical system specify its behavior over any given short period of time. To determine the system's behavior for a longer period, it is often necessary to integrate the equations, either through analytical means or through iteration, often with the aid of computers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
To cope with constant and unexpected changes in their environment, robots need to adapt their paths rapidly and appropriately without endangering humans. this course presents method to react within mi
In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge (provided that the divergence can be treated within the linearized approximation) at a rate given by where is the Lyapunov exponent. The rate of separation can be different for different orientations of initial separation vector.
The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often referred to as an archetypal example of how complex, chaotic behaviour can arise from very simple nonlinear dynamical equations. The map was popularized in a 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation written down by Pierre François Verhulst. Mathematically, the logistic map is written where xn is a number between zero and one, which represents the ratio of existing population to the maximum possible population.
The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. In popular media the "butterfly effect" stems from the real-world implications of the Lorenz attractor, namely that several different initial chaotic conditions evolve in phase space in a way that never repeats, so all chaos is unpredictable.
Covers small scale stability in gradient systems, focusing on trajectory properties and equilibrium point attraction.
Explores the synchronization and coupling of circadian and cell cycles, focusing on dynamics, predictions, and organ-specific time.
Covers bifurcations, long-term dynamics, logistic map, universality, and correspondence between different maps.
Dynamical flow networks serve as macroscopic models for, e.g., transportation networks, queuing networks, and distribution networks. While the flow dynamics in such networks follow the conservation of mass on the links, the outflow from each link is often ...
Time series analysis has proven to be a powerful method to characterize several phenomena in biology, neuroscience and economics, and to understand some of their underlying dynamical features. Several methods have been proposed for the analysis of multivar ...
Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size L(t) and a propagation velocity c(p)(t) (t is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent fric ...