Concept

Primitive element (finite field)

In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1)th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α^i for some integer i. If q is a prime number, the elements of GF(q) can be identified with the integers modulo q. In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial. The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ is Euler's totient function, which counts the number of elements less than or equal to m which are relatively prime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF(q) is cyclic of order q − 1, and the fact that a finite cyclic group of order m contains φ(m) generators.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.