Concept

Ion-mobility spectrometry–mass spectrometry

Summary
Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics. Earl W. McDaniel has been called the father of ion mobility mass spectrometry. In the early 1960s, he coupled a low-field ion mobility drift cell to a sector mass spectrometer. The combination of time-of-flight mass spectrometry and ion mobility spectrometry was pioneered in 1963 at Bell Labs. In 1963 McAfee and Edelson published an IMS-TOF combination. In 1967 McKnight, McAfee and Sipler published an IMS-TOF combination. Their instrument included an orthogonal TOF. In 1969 Cohen et al. filed a patent on an IMS-QMS system. The QMS at that time was an improvement compared to the TOFMS, because the TOFMS had a slow electronic data acquisition systems at that time. In 1970, Young, Edelson and Falconer published an IMS-TOF with orthogonal extraction. They seem to have used the same system as McKnight et al. in 1967, incorporating slight modifications. Their work was later reproduced in the landmark book of Mason/McDaniel, which is regarded as the “bible of IMS” by those skilled in the art. In 1996 Guevremont et al. presented a poster at the ASMS conference about IMS-TOF. In 1997 Tanner patented a quadrupole with axial fields which can be used as a drift cell for IMS separation. He also mentions the combination of these quadrupoles with an orthogonal TOFMS. In 1998 Clemmer developed an IMS-TOF combination, using a co-axial IMS-TOF setup. In 1999 Clemmer developed an IMS-TOF with an orthogonal TOF system.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
CH-728: Mass spectrometry, principles and applications
The goal is to provide students with a complete overview of the principles and key applications of modern mass spectrometry and meet the current practical demand of EPFL researchers to improve structu
CH-314: Structural analysis
The aim of this course is to treat three of the major techniques for structural characterization of molecules: mass spectrometry, NMR, and X-ray techniques.
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
Show more
Related publications (403)
Related concepts (1)
Mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio.