Astronomy in the medieval Islamic worldMedieval Islamic astronomy comprises the astronomical developments made in the Islamic world, particularly during the Islamic Golden Age (9th–13th centuries), and mostly written in the Arabic language. These developments mostly took place in the Middle East, Central Asia, Al-Andalus, and North Africa, and later in the Far East and India. It closely parallels the genesis of other Islamic sciences in its assimilation of foreign material and the amalgamation of the disparate elements of that material to create a science with Islamic characteristics.
Al-AndalusAl-Andalus (الأَنْدَلُس) was the Muslim-ruled area of the Iberian Peninsula. The term is used by modern historians for the former Islamic states in modern Spain, Portugal and France. At its greatest geographical extent, it occupied most of the peninsula and part of present-day southern France, Septimania (8th Century) under Umayyad rule. For nearly 100 years, from the 9th century to the 10th, al-Andalus extended its presence from Fraxinetum into the Alps with a series of organized raids.
Heliacal risingThe heliacal rising (hɪˈlaɪ.əkəl ) or star rise of a star occurs annually, or the similar phenomenon of a planet, when it first becomes visible above the eastern horizon at dawn just before sunrise (thus becoming "the morning star") after a complete orbit of the Earth around the Sun. Historically, the most important such rising is that of Sirius, which was an important feature of the Egyptian calendar and astronomical development.
ZijA zij (zīj) is an Islamic astronomical book that tabulates parameters used for astronomical calculations of the positions of the sun, moon, stars, and planets. The name zij is derived from the Middle Persian term zih or zīg ("cord"). The term is believed to refer to the arrangement of threads in weaving, which was transferred to the arrangement of rows and columns in tabulated data. Some such books were referred to as qānūn, derived from the equivalent Greek word, .
Chinese astronomyAstronomy in China has a long history stretching from the Shang dynasty, being refined over a period of more than 3,000 years. The ancient Chinese people have identified stars from 1300 BCE, as Chinese star names later categorized in the twenty-eight mansions have been found on oracle bones unearthed at Anyang, dating back to the mid-Shang dynasty. The core of the "mansion" (宿 xiù) system also took shape around this period, by the time of King Wu Ding (1250–1192 BCE).
Babylonian astronomyBabylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia. Babylonian astronomy seemed to have focused on a select group of stars and constellations known as Ziqpu stars. These constellations may have been collected from various earlier sources. The earliest catalogue, Three Stars Each, mentions stars of the Akkadian Empire, of Amurru, of Elam and others. A numbering system based on sixty was used, a sexagesimal system.
Hindu calendarThe Hindu calendar, (also called Panchanga) (पञ्चाङ्ग) or Panjika is one of various lunisolar calendars that are traditionally used in the Indian subcontinent and Southeast Asia, with further regional variations for social and Hindu religious purposes. They adopt a similar underlying concept for timekeeping based on sidereal year for solar cycle and adjustment of lunar cycles in every three years, but differ in their relative emphasis to moon cycle or the sun cycle and the names of months and when they consider the New Year to start.
EphemerisIn astronomy and celestial navigation, an ephemeris (pl. ephemerides; ) is a book with tables that gives the trajectory of naturally occurring astronomical objects as well as artificial satellites in the sky, i.e., the position (and possibly velocity) over time. Historically, positions were given as printed tables of values, given at regular intervals of date and time. The calculation of these tables was one of the first applications of mechanical computers. Modern ephemerides are often provided in electronic form.
Celestial navigationCelestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as "dead reckoning." Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.
TideTides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables can be used for any given locale to find the predicted times and amplitude (or "tidal range"). The predictions are influenced by many factors including the alignment of the Sun and Moon, the phase and amplitude of the tide (pattern of tides in the deep ocean), the amphidromic systems of the oceans, and the shape of the coastline and near-shore bathymetry (see Timing).