**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Centrifugal force

Summary

In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel to the axis of rotation and passing through the coordinate system's origin. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis. The magnitude of centrifugal force F on an object of mass m at the distance r from the origin of a frame of reference rotating with angular velocity ω is:
The concept of centrifugal force can be applied in rotating devices, such as centrifuges, centrifugal pumps, centrifugal governors, and centrifugal clutches, and in centrifugal railways, planetary orbits and banked curves, when they are analyzed in a rotating coordinate system.
Confusingly, the term has sometimes also been used for the reactive centrifugal force, a real inertial-frame-independent Newtonian force that exists as a reaction to a centripetal force.
History of centrifugal and centripetal forces
From 1659, the Neo-Latin term vi centrifuga ("centrifugal force") is attested in Christiaan Huygens' notes and letters. Note, that in Latin centrum means "center" and ‐fugus (from fugiō) means "fleeing, avoiding". Thus, centrifugus means "fleeing from the center" in a literal translation.
In 1673, in Horologium Oscillatorium, Huygens writes (as translated by Richard J. Blackwell):
There is another kind of oscillation in addition to the one we have examined up to this point; namely, a motion in which a suspended weight is moved around through the circumference of a circle. From this we were led to the construction of another clock at about the same time we invented the first one. [...] I originally intended to publish here a lengthy description of these clocks, along with matters pertaining to circular motion and centrifugal force, as it might be called, a subject about which I have more to say than I am able to do at present.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (33)

PHYS-101(f): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

PHYS-101(en): General physics : mechanics (English)

Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c

ME-104: Introduction to structural mechanics

The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig

Related publications (267)

Related people (50)

Related units (4)

Related concepts (32)

Related lectures (571)

Related MOOCs (20)

Eötvös experiment

The Eötvös experiment was a famous physics experiment that measured the correlation between inertial mass and gravitational mass, demonstrating that the two were one and the same, something that had long been suspected but never demonstrated with the same accuracy. The earliest experiments were done by Isaac Newton (1642–1727) and improved upon by Friedrich Wilhelm Bessel (1784–1846). A much more accurate experiment using a torsion balance was carried out by Loránd Eötvös starting around 1885, with further improvements in a lengthy run between 1906 and 1909.

Fictitious force

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which treats forces for just one object. Passengers in a vehicle accelerating in the forward direction may perceive they are acted upon by a force moving them into the direction of the backrest of their seats for instance.

Rotating reference frame

A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.) Fictitious force All non-inertial reference frames exhibit fictitious forces; rotating reference frames are characterized by three: the centrifugal force, the Coriolis force, and, for non-uniformly rotating reference frames, the Euler force.

Conversion electromécanique I

Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.

Conversion electromécanique I

Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.

Explores systems of forces in three dimensions, emphasizing moments and couples, equilibrium, and scalar components.

Explores Newton's laws of motion, fundamental forces in nature, and the unification of interactions.

Introduces structural mechanics concepts like distributed loads, centroids, and equilibrium in 2D and 3D.

Romain Christophe Rémy Fleury, Matthieu Francis Malléjac, Bakhtiyar Orazbayev, Stefan Rotter

Light and sound waves can move objects through the transfer of linear or angular momentum, which has led to the development of optical and acoustic tweezers, with applications ranging from biomedical engineering to quantum optics. Although impressive manip ...

2024,

This work focuses on understanding and identifying the drag forces applied to a rotary-wing Micro Aerial Vehicle (MAV). We propose a lumped drag model that concisely describes the aerodynamical forces the MAV is subject to, with a minimal set of parameters ...

2024Nicolas Henri Bernard Flammarion, Hristo Georgiev Papazov, Scott William Pesme

In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size $\gamma$ and momentum parameter $\beta$ that allows u ...

2024