Residual entropy is the difference in entropy between a non-equilibrium state and crystal state of a substance close to absolute zero. This term is used in condensed matter physics to describe the entropy at zero kelvin of a glass or plastic crystal referred to the crystal state, whose entropy is zero according to the third law of thermodynamics. It occurs if a material can exist in many different states when cooled. The most common non-equilibrium state is vitreous state, glass.
A common example is the case of carbon monoxide, which has a very small dipole moment. As the carbon monoxide crystal is cooled to absolute zero, few of the carbon monoxide molecules have enough time to align themselves into a perfect crystal, (with all of the carbon monoxide molecules oriented in the same direction). Because of this, the crystal is locked into a state with different corresponding microstates, giving a residual entropy of , rather than zero.
Another example is any amorphous solid (glass). These have residual entropy, because the atom-by-atom microscopic structure can be arranged in a huge number of different ways across a macroscopic system.
One of the first examples of residual entropy was pointed out by Pauling to describe water ice. In water, each oxygen atom is bonded to two hydrogen atoms. However, when water freezes it forms a tetragonal structure where each oxygen atom has four hydrogen neighbors (due to neighboring water molecules). The hydrogen atoms sitting between the oxygen atoms have some degree of freedom as long as each oxygen atom has two hydrogen atoms that are 'nearby', thus forming the traditional H2O water molecule. However, it turns out that for a large number of water molecules in this configuration, the hydrogen atoms have a large number of possible configurations that meet the 2-in 2-out rule (each oxygen atom must have two 'near' (or 'in') hydrogen atoms, and two far (or 'out') hydrogen atoms). This freedom exists down to absolute zero, which was previously seen as an absolute one-of-a-kind configuration.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the applications and challenges of Neural Quantum States in computational quantum science, including frustrated spins and quantum chemistry mappings.
In condensed matter physics, the term geometrical frustration (or in short: frustration) refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces (each one favoring rather simple, but different structures) lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures.
Absolute zero is the lowest limit of the thermodynamic temperature scale; a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.
This thesis is motivated by recent experiments on systems described by extensions of the one-dimensional transverse-field Ising (TFI) model where (1) finite-size properties of Ising-ordered phases -- specifically, ground state level crossings -- were obser ...
Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n ...
In spin systems, geometrical frustration describes the impossibility of minimizing simultaneously all the interactions in a Hamiltonian, often giving rise to macroscopic ground-state degeneracies and emergent low-temperature physics. In this thesis, combin ...