Residual entropy is the difference in entropy between a non-equilibrium state and crystal state of a substance close to absolute zero. This term is used in condensed matter physics to describe the entropy at zero kelvin of a glass or plastic crystal referred to the crystal state, whose entropy is zero according to the third law of thermodynamics. It occurs if a material can exist in many different states when cooled. The most common non-equilibrium state is vitreous state, glass.
A common example is the case of carbon monoxide, which has a very small dipole moment. As the carbon monoxide crystal is cooled to absolute zero, few of the carbon monoxide molecules have enough time to align themselves into a perfect crystal, (with all of the carbon monoxide molecules oriented in the same direction). Because of this, the crystal is locked into a state with different corresponding microstates, giving a residual entropy of , rather than zero.
Another example is any amorphous solid (glass). These have residual entropy, because the atom-by-atom microscopic structure can be arranged in a huge number of different ways across a macroscopic system.
One of the first examples of residual entropy was pointed out by Pauling to describe water ice. In water, each oxygen atom is bonded to two hydrogen atoms. However, when water freezes it forms a tetragonal structure where each oxygen atom has four hydrogen neighbors (due to neighboring water molecules). The hydrogen atoms sitting between the oxygen atoms have some degree of freedom as long as each oxygen atom has two hydrogen atoms that are 'nearby', thus forming the traditional H2O water molecule. However, it turns out that for a large number of water molecules in this configuration, the hydrogen atoms have a large number of possible configurations that meet the 2-in 2-out rule (each oxygen atom must have two 'near' (or 'in') hydrogen atoms, and two far (or 'out') hydrogen atoms). This freedom exists down to absolute zero, which was previously seen as an absolute one-of-a-kind configuration.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Expliquer la stabilité d'un solide est une question centrale en physique de la matière condensée. Possibles dans le cas des molécules, les calculs quantiques les plus précis montrent souvent une grande diversité pour les configurations atomiques de faible énergie. Du fait de leur taille macroscopique, et donc du nombre astronomique d'atomes mis en jeu, la même étude pour les solides impose que de nombreuses approximations soient faites pour calculer leur énergie de cohésion.
Le zéro absolu est la température la plus basse qui puisse exister. Il correspond à la limite basse de l'échelle de température thermodynamique, soit l'état dans lequel l'enthalpie et l'entropie d'un gaz parfait atteint sa valeur minimale, notée 0. Cette température théorique est déterminée en extrapolant la loi des gaz parfaits : selon un accord international, la valeur du zéro absolu est fixée à (Celsius) ou (Fahrenheit). Par définition, les échelles Kelvin et Rankine prennent le zéro absolu comme valeur 0.
Explore les applications et les défis des états quantiques neuronaux dans la science quantique computationnelle, y compris les spins frustrés et les cartographies de la chimie quantique.
Explore les états quantiques neuraux, les techniques de cartographie, la simulation des circuits quantiques et les compromis entre les biais de variance dans les calculs quantiques.
In spin systems, geometrical frustration describes the impossibility of minimizing simultaneously all the interactions in a Hamiltonian, often giving rise to macroscopic ground-state degeneracies and emergent low-temperature physics. In this thesis, combin ...
EPFL2022
This thesis is motivated by recent experiments on systems described by extensions of the one-dimensional transverse-field Ising (TFI) model where (1) finite-size properties of Ising-ordered phases -- specifically, ground state level crossings -- were obser ...
Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n ...