**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Geometrical frustration

Summary

In condensed matter physics, the term geometrical frustration (or in short: frustration) refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces (each one favoring rather simple, but different structures) lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures. Much studied examples are amorphous materials, glasses, or dilute magnets.
The term frustration, in the context of magnetic systems, has been introduced by Gerard Toulouse in 1977. Frustrated magnetic systems had been studied even before. Early work includes a study of the Ising model on a triangular lattice with nearest-neighbor spins coupled antiferromagnetically, by G. H. Wannier, published in 1950. Related features occur in magnets with competing interactions, where both ferromagnetic as well as antiferromagnetic couplings between pairs of spins or magnetic moments are present, with the type of interaction depending on the separation distance of the spins. In that case commensurability, such as helical spin arrangements may result, as had been discussed originally, especially, by A. Yoshimori, T. A. Kaplan, R. J. Elliott, and others, starting in 1959, to describe experimental findings on rare-earth metals. A renewed interest in such spin systems with frustrated or competing interactions arose about two decades later, beginning in the 1970s, in the context of spin glasses and spatially modulated magnetic superstructures. In spin glasses, frustration is augmented by stochastic disorder in the interactions, as may occur experimentally in non-stoichiometric magnetic alloys. Carefully analyzed spin models with frustration include the Sherrington–Kirkpatrick model, describing spin glasses, and the ANNNI model, describing commensurability magnetic superstructures.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (213)

Related courses (6)

Related people (36)

Related concepts (7)

Related lectures (24)

Related units (6)

Ontological neighbourhood

PHYS-726: Introduction to Frustrated Magnetism

To provide an introduction to all aspects of the rapidly evolving field of frustrated magnetism:

- New paradigms: spin liquids, spin ice, topological order, ...
- Basic models and methods
- Experi

PHYS-645: Physics of random and disordered systems

Introduction to the physics of random processes and disordered systems, providing an overview over phenomena, concepts and theoretical approaches
Topics include:
Random walks; Roughening/pinning; Lo

PHYS-491: Magnetism in materials

The lectures will provide an introduction to magnetism in materials, covering fundamentals of spin and orbital degrees of freedom, interactions between moments and some typical ordering patterns. Sele

Residual entropy

Residual entropy is the difference in entropy between a non-equilibrium state and crystal state of a substance close to absolute zero. This term is used in condensed matter physics to describe the entropy at zero kelvin of a glass or plastic crystal referred to the crystal state, whose entropy is zero according to the third law of thermodynamics. It occurs if a material can exist in many different states when cooled. The most common non-equilibrium state is vitreous state, glass.

Order and disorder

In physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. In condensed matter physics, systems typically are ordered at low temperatures; upon heating, they undergo one or several phase transitions into less ordered states. Examples for such an order-disorder transition are: the melting of ice: solid-liquid transition, loss of crystalline order; the demagnetization of iron by heating above the Curie temperature: ferromagnetic-paramagnetic transition, loss of magnetic order.

Spin glass

In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called 'freezing temperature' Tf. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as "disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random.

We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...

Experimental Techniques: Neutron Scattering - Elastic Scattering

Covers experimental techniques in neutron scattering, focusing on magnetic elastic scattering.

Neural Quantum States: Applications and Challenges

Explores the applications and challenges of Neural Quantum States in computational quantum science, including frustrated spins and quantum chemistry mappings.

Neural Quantum States: Applications and Mapping Techniques

Explores neural quantum states, mapping techniques, quantum circuit simulation, and variance-bias trade-offs in quantum computations.

Giuseppe Carleo, Sofia Vallecorsa

Entanglement forging based variational algorithms leverage the bipartition of quantum systems for addressing ground-state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis stat ...

Dirk Grundler, Sho Watanabe, Vinayak Shantaram Bhat

Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic ...

2023