Summary
Automatic image annotation (also known as automatic image tagging or linguistic indexing) is the process by which a computer system automatically assigns metadata in the form of captioning or keywords to a . This application of computer vision techniques is used in systems to organize and locate images of interest from a database. This method can be regarded as a type of multi-class with a very large number of classes - as large as the vocabulary size. Typically, in the form of extracted feature vectors and the training annotation words are used by machine learning techniques to attempt to automatically apply annotations to new images. The first methods learned the correlations between image features and training annotations, then techniques were developed using machine translation to try to translate the textual vocabulary with the 'visual vocabulary', or clustered regions known as blobs. Work following these efforts have included classification approaches, relevance models and so on. The advantages of automatic image annotation versus (CBIR) are that queries can be more naturally specified by the user. CBIR generally (at present) requires users to search by image concepts such as color and texture, or finding example queries. Certain image features in example images may override the concept that the user is really focusing on. The traditional methods of image retrieval such as those used by libraries have relied on manually annotated images, which is expensive and time-consuming, especially given the large and constantly growing image databases in existence.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MICRO-511: Image processing I
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
ENV-540: Image processing for Earth observation
This course covers optical remote sensing from satellites and airborne platforms. The different systems are presented. The students will acquire skills in image processing and machine/deep learning to
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Related concepts (1)
Computer vision
Computer vision tasks include methods for , , and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input to the retina in the human analog) into descriptions of the world that make sense to thought processes and can elicit appropriate action.