Summary
An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering. The first recorded damage from an electromagnetic pulse came with the solar storm of August 1859, or the Carrington Event. In modern warfare, weapons delivering a high energy EMP pulse are designed to disrupt communications equipment, the computers needed to operate modern warplanes, or even put the entire electrical network of a target country out of commission. An electromagnetic pulse is a short surge of electromagnetic energy. Its short duration means that it will be spread over a range of frequencies. Pulses are typically characterized by: The mode of energy transfer (radiated, electric, magnetic or conducted). The range or spectrum of frequencies present. Pulse waveform: shape, duration and amplitude. The frequency spectrum and the pulse waveform are interrelated via the Fourier transform which describes how component waveforms may sum to the observed frequency spectrum. Electromagnetism EMP energy may be transferred in any of four forms: Electric field Magnetic field Electromagnetic radiation Electrical conduction According to Maxwell's equations, a pulse of electric energy will always be accompanied by a pulse of magnetic energy. In a typical pulse, either the electric or the magnetic form will dominate. In general, radiation only acts over long distances, with the magnetic and electric fields acting over short distances. There are a few exceptions, such as a solar magnetic flare.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.