An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering. The first recorded damage from an electromagnetic pulse came with the solar storm of August 1859, or the Carrington Event. In modern warfare, weapons delivering a high energy EMP pulse are designed to disrupt communications equipment, the computers needed to operate modern warplanes, or even put the entire electrical network of a target country out of commission. An electromagnetic pulse is a short surge of electromagnetic energy. Its short duration means that it will be spread over a range of frequencies. Pulses are typically characterized by: The mode of energy transfer (radiated, electric, magnetic or conducted). The range or spectrum of frequencies present. Pulse waveform: shape, duration and amplitude. The frequency spectrum and the pulse waveform are interrelated via the Fourier transform which describes how component waveforms may sum to the observed frequency spectrum. Electromagnetism EMP energy may be transferred in any of four forms: Electric field Magnetic field Electromagnetic radiation Electrical conduction According to Maxwell's equations, a pulse of electric energy will always be accompanied by a pulse of magnetic energy. In a typical pulse, either the electric or the magnetic form will dominate. In general, radiation only acts over long distances, with the magnetic and electric fields acting over short distances. There are a few exceptions, such as a solar magnetic flare.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
COM-500: Statistical signal and data processing through applications
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Show more
Related lectures (34)
Transient Simulation with QUCS
Covers simulation of transients using QUCS for pulse and AC sources.
Operational Amplifiers: Noise Analysis
Explores noise analysis in operational amplifiers and strategies for noise reduction.
Retarded Potentials and Electromagnetic Energy
Explores retarded potentials, electromagnetic energy, and conservation of energy in electromagnetism.
Show more
Related concepts (16)
Carrington Event
The Carrington Event was the most intense geomagnetic storm in recorded history, peaking from 1 to 2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in multiple telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere. The geomagnetic storm was associated with a very bright solar flare on 1 September 1859.
March 1989 geomagnetic storm
The March 1989 geomagnetic storm occurred as part of severe to extreme solar storms during early to mid March 1989, the most notable being a geomagnetic storm that struck Earth on March 13. This geomagnetic storm caused a nine-hour outage of Hydro-Québec's electricity transmission system. The onset time was exceptionally rapid. Other historically significant solar storms occurred later in 1989, during a very active period of solar cycle 22.
Lightning strike
A lightning strike is a lightning event in which the electric discharge takes place between the atmosphere and the ground. Most originate in a cumulonimbus cloud and terminate on the ground, called cloud-to-ground (CG) lightning. A less common type of strike, ground-to-cloud (GC) lightning, is upward-propagating lightning initiated from a tall grounded object and reaching into the clouds. About 25% of all lightning events worldwide are strikes between the atmosphere and earth-bound objects.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.