Divisor functionIn mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
PrimorialIn mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors. For the nth prime number pn, the primorial pn# is defined as the product of the first n primes: where pk is the kth prime number.
Mertens functionIn number theory, the Mertens function is defined for all positive integers n as where is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows: Less formally, is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.
Goldbach's conjectureGoldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4e18, but remains unproven despite considerable effort. On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), in which he proposed the following conjecture: Goldbach was following the now-abandoned convention of considering 1 to be a prime number, so that a sum of units would indeed be a sum of primes.
Logarithmic integral functionIn mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value . The logarithmic integral has an integral representation defined for all positive real numbers x ≠ 1 by the definite integral Here, ln denotes the natural logarithm.
Hilbert's eighth problemHilbert's eighth problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns number theory, and in particular the Riemann hypothesis, although it is also concerned with the Goldbach Conjecture. The problem as stated asked for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes. Riemann Hypothesis Hilbert calls for a solution to the Riemann hypothesis, which has long been regarded as the deepest open problem in mathematics.
On the Number of Primes Less Than a Given Magnitude" die Anzahl der Primzahlen unter einer gegebenen " (usual English translation: "On the Number of Primes Less Than a Given Magnitude") is a seminal 9-page paper by Bernhard Riemann published in the November 1859 edition of the Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. This paper studies the prime-counting function using analytic methods. Although it is the only paper Riemann ever published on number theory, it contains ideas which influenced thousands of researchers during the late 19th century and up to the present day.
Riemann Xi functionIn mathematics, the Riemann Xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann. Riemann's original lower-case "xi"-function, was renamed with an upper-case (Greek letter "Xi") by Edmund Landau. Landau's lower-case ("xi") is defined as for . Here denotes the Riemann zeta function and is the Gamma function.
Chebyshev functionIn mathematics, the Chebyshev function is either a scalarising function (Tchebycheff function) or one of two related functions. The first Chebyshev function θ (x) or θ (x) is given by where denotes the natural logarithm, with the sum extending over all prime numbers p that are less than or equal to x. The second Chebyshev function ψ (x) is defined similarly, with the sum extending over all prime powers not exceeding x where Λ is the von Mangoldt function.
Ramanujan's sumIn number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula where (a, q) = 1 means that a only takes on values coprime to q. Srinivasa Ramanujan mentioned the sums in a 1918 paper. In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes.