In statistics, completeness is a property of a statistic in relation to a parameterised model for a set of observed data. A complete statistic T is one for which any proposed distribution on the domain of T is predicted by one or more prior distributions on the model parameter space. In other words, the model space is 'rich enough' that every possible distribution of T can be explained by some prior distribution on the model parameter space. In contrast, a sufficient statistic T is one for which any two prior distributions will yield different distributions on T. (This last statement assumes that the model space is identifiable, i.e. that there are no 'duplicate' parameter values. This is a minor point.) Put another way: assume that we have an identifiable model space parameterised by , and a statistic (which is effectively just a function of one or more i.i.d. random variables drawn from the model). Then consider the map which takes each distribution on model parameter to its induced distribution on statistic . The statistic is said to be complete when is surjective, and sufficient when is injective. Consider a random variable X whose probability distribution belongs to a parametric model Pθ parametrized by θ. Say T is a statistic; that is, the composition of a measurable function with a random sample X1,...,Xn. The statistic T is said to be complete for the distribution of X if, for every measurable function g,: The statistic T is said to be boundedly complete for the distribution of X if this implication holds for every measurable function g that is also bounded. The Bernoulli model admits a complete statistic. Let X be a random sample of size n such that each Xi has the same Bernoulli distribution with parameter p. Let T be the number of 1s observed in the sample, i.e. . T is a statistic of X which has a binomial distribution with parameters (n,p). If the parameter space for p is (0,1), then T is a complete statistic. To see this, note that Observe also that neither p nor 1 − p can be 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
COM-302: Principles of digital communications
This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).
Afficher plus
Séances de cours associées (32)
Famille exponentielle : Distribution d'entropie maximale
Couvre les familles exponentielles, l'entropie maximale et les propriétés de distribution de Moxwell-Boltzmann.
Algèbre linéaire en science des données
Explore l'application de l'algèbre linéaire dans la science des données, couvrant la réduction de la variance, la théorie de la distribution des modèles et les estimations du maximum de vraisemblance.
Théorie statistique : inférence et suffisance
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Afficher plus
Publications associées (24)

An Unbiased Method of Measuring the Ratio of Two Data Sets

Jean-Paul Richard Kneib, Huanyuan Shan

In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio R between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, and the decay rate of gravitational ...
IOP Publishing Ltd2023

A General Framework for Optimal Data-Driven Optimization

Daniel Kuhn, Tobias Sutter

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...
2021

Pollution Detection Algorithm (PDA)

Julia Schmale, Andrea Baccarini, Ivo Fabio Beck, Hélène Paule Angot

The Pollution Detection Algorithm (PDA) is an algorithm to identify and flag periods of primary polluted data in remote atmospheric time series in five steps. The first and most important step identifies polluted periods based on the gradient (time-derivat ...
EPFL Infoscience2021
Afficher plus
Personnes associées (2)
Concepts associés (5)
Loi de Poisson
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Théorie de l'estimation
En statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Ancillary statistic
An ancillary statistic is a measure of a sample whose distribution (or whose pmf or pdf) does not depend on the parameters of the model. An ancillary statistic is a pivotal quantity that is also a statistic. Ancillary statistics can be used to construct prediction intervals. They are also used in connection with Basu's theorem to prove independence between statistics. This concept was first introduced by Ronald Fisher in the 1920s, but its formal definition was only provided in 1964 by Debabrata Basu.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.