Distance-transitive graphIn the mathematical field of graph theory, a distance-transitive graph is a graph such that, given any two vertices v and w at any distance i, and any other two vertices x and y at the same distance, there is an automorphism of the graph that carries v to x and w to y. Distance-transitive graphs were first defined in 1971 by Norman L. Biggs and D. H. Smith. A distance-transitive graph is interesting partly because it has a large automorphism group.
Algebraic graph theoryAlgebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants. The first branch of algebraic graph theory involves the study of graphs in connection with linear algebra.
Toroidal graphIn the mathematical field of graph theory, a toroidal graph is a graph that can be embedded on a torus. In other words, the graph's vertices can be placed on a torus such that no edges cross. Any graph that can be embedded in a plane can also be embedded in a torus. A toroidal graph of genus 1 can be embedded in a torus but not in a plane. The Heawood graph, the complete graph K7 (and hence K5 and K6), the Petersen graph (and hence the complete bipartite graph K3,3, since the Petersen graph contains a subdivision of it), one of the Blanuša snarks, and all Möbius ladders are toroidal.
Coxeter graphIn the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter. The Coxeter graph has chromatic number 3, chromatic index 3, radius 4, diameter 4 and girth 7. It is also a 3-vertex-connected graph and a 3-edge-connected graph. It has book thickness 3 and queue number 2. The Coxeter graph is hypohamiltonian: it does not itself have a Hamiltonian cycle but every graph formed by removing a single vertex from it is Hamiltonian.
Perfect matchingIn graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.
Regular map (graph theory)In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold (such as a sphere, torus, or real projective plane) into topological disks such that every flag (an incident vertex-edge-face triple) can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory.
Nauru graphIn the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru. It has chromatic number 2, chromatic index 3, diameter 4, radius 4 and girth 6. It is also a 3-vertex-connected and 3-edge-connected graph. It has book thickness 3 and queue number 2. The Nauru graph requires at least eight crossings in any drawing of it in the plane.
Integral graphIn the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers. The notion was introduced in 1974 by Frank Harary and Allen Schwenk. The complete graph Kn is integral for all n. The only cycle graphs that are integral are , , and . If a graph is integral, then so is its complement graph; for instance, the complements of complete graphs, edgeless graphs, are integral.
Hypohamiltonian graphIn the mathematical field of graph theory, a graph G is said to be hypohamiltonian if G itself does not have a Hamiltonian cycle but every graph formed by removing a single vertex from G is Hamiltonian. Hypohamiltonian graphs were first studied by . cites and as additional early papers on the subject; another early work is by . sums up much of the research in this area with the following sentence: “The articles dealing with those graphs ...
Odd graphIn the mathematical field of graph theory, the odd graphs are a family of symmetric graphs with high odd girth, defined from certain set systems. They include and generalize the Petersen graph. The odd graph has one vertex for each of the -element subsets of a -element set. Two vertices are connected by an edge if and only if the corresponding subsets are disjoint. That is, is the Kneser graph . is a triangle, while is the familiar Petersen graph. The generalized odd graphs are defined as distance-regular graphs with diameter and odd girth for some .