Summary
An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials (up to several electronvolts) that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields. Penning traps can be used for precise magnetic measurements in spectroscopy. Studies of quantum state manipulation most often use the Paul trap. This may lead to a trapped ion quantum computer and has already been used to create the world's most accurate atomic clocks. Electron guns (a device emitting high-speed electrons, used in CRTs) can use an ion trap to prevent degradation of the cathode by positive ions. The physical principles of ion traps were first explored by F. M. Penning (1894–1953), who observed that electrons released by the cathode of an ionization vacuum gauge follow a long cycloidal path to the anode in the presence of a sufficiently strong magnetic field. A scheme for confining charged particles in three dimensions without the use of magnetic fields was developed by W. Paul based on his work with quadrupole mass spectrometers. A charged particle, such as an ion, feels a force from an electric field. As a consequence of Earnshaw's theorem, it is not possible to confine an ion in an electrostatic field. However, physicists have various ways of working around this theorem by using combinations of static magnetic and electric fields (as in a Penning trap) or by oscillating electric fields (Paul trap).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.