Ising modelThe Ising model (ˈiːzɪŋ) (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a graph, usually a lattice (where the local structure repeats periodically in all directions), allowing each spin to interact with its neighbors.
SpinorIn geometry and physics, spinors spɪnɚ are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360° (see picture). It takes a rotation of 720° for a spinor to go back to its original state.
Dirac spinorIn quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks.
Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Helicity (particle physics)In physics, helicity is the projection of the spin onto the direction of momentum. The angular momentum J is the sum of an orbital angular momentum L and a spin S. The relationship between orbital angular momentum L, the position operator r and the linear momentum (orbit part) p is so L's component in the direction of p is zero. Thus, helicity is just the projection of the spin onto the direction of linear momentum. The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite.
Quantum stateIn quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.
Wolfgang PauliWolfgang Ernst Pauli (ˈpɔːli; ˈvɔlfɡaŋ ˈpaʊli; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics for his "decisive contribution through his discovery of a new law of Nature, the exclusion principle or Pauli principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.
Particle statisticsParticle statistics is a particular description of multiple particles in statistical mechanics. A key prerequisite concept is that of a statistical ensemble (an idealization comprising the state space of possible states of a system, each labeled with a probability) that emphasizes properties of a large system as a whole at the expense of knowledge about parameters of separate particles. When an ensemble describes a system of particles with similar properties, their number is called the particle number and usually denoted by N.
Spin–statistics theoremIn quantum mechanics, the spin–statistics theorem relates the intrinsic spin of a particle (angular momentum not due to the orbital motion) to the particle statistics it obeys. In units of the reduced Planck constant ħ, all particles that move in 3 dimensions have either integer spin or half-integer spin. In a quantum system, a physical state is described by a state vector. A pair of distinct state vectors are physically equivalent if they differ only by an overall phase factor, ignoring other interactions.
AnyonIn physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons (detected by two experiments in 2020) play a major role in the fractional quantum Hall effect.