Mutagenesis (mjuːtəˈdʒɛnɪsɪs) is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using laboratory procedures. A mutagen is a mutation-causing agent, be it chemical or physical, which results in an increased rate of mutations in an organism's genetic code. In nature mutagenesis can lead to cancer and various heritable diseases, and it is also a driving force of evolution. Mutagenesis as a science was developed based on work done by Hermann Muller, Charlotte Auerbach and J. M. Robson in the first half of the 20th century.
DNA may be modified, either naturally or artificially, by a number of physical, chemical and biological agents, resulting in mutations. Hermann Muller found that "high temperatures" have the ability to mutate genes in the early 1920s, and in 1927, demonstrated a causal link to mutation upon experimenting with an x-ray machine, noting phylogenetic changes when irradiating fruit flies with relatively high dose of X-rays. Muller observed a number of chromosome rearrangements in his experiments, and suggested mutation as a cause of cancer. The association of exposure to radiation and cancer had been observed as early as 1902, six years after the discovery of X-ray by Wilhelm Röntgen, and the discovery of radioactivity by Henri Becquerel. Lewis Stadler, Muller's contemporary, also showed the effect of X-rays on mutations in barley in 1928, and of ultraviolet (UV) radiation on maize in 1936. In 1940s, Charlotte Auerbach and J. M. Robson found that mustard gas can also cause mutations in fruit flies.
While changes to the chromosome caused by X-ray and mustard gas were readily observable to early researchers, other changes to the DNA induced by other mutagens were not so easily observable; the mechanism by which they occur may be complex, and take longer to unravel. For example, soot was suggested to be a cause of cancer as early as 1775, and coal tar was demonstrated to cause cancer in 1915.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer in animals, such mutagens can therefore be carcinogens, although not all necessarily are. All mutagens have characteristic mutational signatures with some chemicals becoming mutagenic through cellular processes. The process of DNA becoming modified is called mutagenesis.
Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abnormal cell division. Cell division is a physiological process that occurs in almost all tissues and under a variety of circumstances. Normally, the balance between proliferation and programmed cell death, in the form of apoptosis, is maintained to ensure the integrity of tissues and organs.
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA (such as pyrimidine dimers caused by exposure to ultraviolet radiation), which then may undergo error-prone repair (especially microhomology-mediated end joining), cause an error during other forms of repair, or cause an error during replication (translesion synthesis).
Microcomputed tomography (mu CT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, ...
Cancer is the second leading cause of death worldwide. Cancer develops through multiple hallmark functions including apoptosis evasion, unlimited replicative potential, metastasis, and immune avoidance. Over the past few decades, researchers have reported ...
The dinuclear anticancer agents 1,n-bis{chlorido3-(oxo-kappa O)-2-methyl-4-(1H)-pyridinonato-kappa O4-ruthenium(II)}alkane (PyRu2n) exhibit high antiproliferative activity in human cancer cell. Reactivity studies with DNA and protein rev ...