Categorical theoryIn mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism). Such a theory can be viewed as defining its model, uniquely characterizing the model's structure. In first-order logic, only theories with a finite model can be categorical. Higher-order logic contains categorical theories with an infinite model. For example, the second-order Peano axioms are categorical, having a unique model whose domain is the set of natural numbers In model theory, the notion of a categorical theory is refined with respect to cardinality.
UrelementIn set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ur-, 'primordial') is an object that is not a set, but that may be an element of a set. It is also referred to as an atom or individual. There are several different but essentially equivalent ways to treat urelements in a first-order theory. One way is to work in a first-order theory with two sorts, sets and urelements, with a ∈ b only defined when b is a set. In this case, if U is an urelement, it makes no sense to say , although is perfectly legitimate.
Descriptive complexity theoryDescriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic.
Quantifier eliminationQuantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement " such that " can be viewed as a question "When is there an such that ?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest.
DeterminacyDeterminacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness". The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws.
Cumulative hierarchyIn mathematics, specifically set theory, a cumulative hierarchy is a family of sets indexed by ordinals such that If is a limit ordinal, then Some authors additionally require that or that . The union of the sets of a cumulative hierarchy is often used as a model of set theory. The phrase "the cumulative hierarchy" usually refers to the standard cumulative hierarchy of the von Neumann universe with introduced by . A cumulative hierarchy satisfies a form of the reflection principle: any formula in the language of set theory that holds in the union of the hierarchy also holds in some stages .
Lindström's theoremIn mathematical logic, Lindström's theorem (named after Swedish logician Per Lindström, who published it in 1969) states that first-order logic is the strongest logic (satisfying certain conditions, e.g. closure under classical negation) having both the (countable) compactness property and the (downward) Löwenheim–Skolem property. Lindström's theorem is perhaps the best known result of what later became known as abstract model theory, the basic notion of which is an abstract logic; the more general notion of an institution was later introduced, which advances from a set-theoretical notion of model to a -theoretical one.