Hierarchical storage management (HSM), also known as Tiered storage, is a data storage and Data management technique that automatically moves data between high-cost and low-cost storage media. HSM systems exist because high-speed storage devices, such as solid state drive arrays, are more expensive (per byte stored) than slower devices, such as hard disk drives, optical discs and magnetic tape drives. While it would be ideal to have all data available on high-speed devices all the time, this is prohibitively expensive for many organizations. Instead, HSM systems store the bulk of the enterprise's data on slower devices, and then copy data to faster disk drives when needed. The HSM system monitors the way data is used and makes best guesses as to which data can safely be moved to slower devices and which data should stay on the fast devices.
HSM may also be used where more robust storage is available for long-term archiving, but this is slow to access. This may be as simple as an off-site backup, for protection against a building fire.
HSM is a long-established concept, dating back to the beginnings of commercial data processing. The techniques used though have changed significantly as new technology becomes available, for both storage and for long-distance communication of large data sets. The scale of measures such as 'size' and 'access time' have changed dramatically. Despite this, many of the underlying concepts keep returning to favour years later, although at much larger or faster scales.
In a typical HSM scenario, data which is frequently used are stored on warm storage device, such as solid state disk (SSD). Data that is infrequently accessed is, after some time migrated to a slower, high capacity cold storage tier. If a user does access data which is on the cold storage tier, it is automatically moved back to warm storage. The advantage is that the total amount of stored data can be much larger than the capacity of the warm storage device, but since only rarely used files are on cold storage, most users will usually not notice any slowdown.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students understand the relevant experimental and theoretical concepts of the nanoscale science. The course move from basic concepts like quantum size effects to hot fields such as spin transp
Modern datacenters with thousands of servers and multi-megawatt power budgets form the backbone of our digital universe. ln this course, we will survey a broad and comprehensive spectrum of datacenter
Magnetic-tape data storage is a system for storing digital information on magnetic tape using digital recording. Tape was an important medium for primary data storage in early computers, typically using large open reels of 7-track, later 9-track tape. Modern magnetic tape is most commonly packaged in cartridges and cassettes, such as the widely supported Linear Tape-Open (LTO) and IBM 3592 series. The device that performs the writing or reading of data is called a tape drive.
In computer storage, a tape library, sometimes called a tape silo, tape robot or tape jukebox, is a storage device that contains one or more tape drives, a number of slots to hold tape cartridges, a barcode reader to identify tape cartridges and an automated method for loading tapes (a robot). Additionally, the area where tapes that are not currently in a silo are stored is also called a tape library. Tape libraries can contain millions of tapes. One of the earliest examples was the IBM 3850 Mass Storage System (MSS), announced in 1974.
A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to store data persistently, typically using flash memory, and functioning as secondary storage in the hierarchy of computer storage. It is also sometimes called a semiconductor storage device, a solid-state device or a solid-state disk, even though SSDs lack the physical spinning disks and movable read–write heads used in hard disk drives (HDDs) and floppy disks. SSD also has rich internal parallelism for data processing.
Explores storage management challenges in transitioning to data lakes, addressing software and hardware heterogeneity, unified storage design, and performance optimization.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for dimensionality reduction of time-series using contrastive learning. A method can include receiving multidimensional input time series data that includes ...
In the last decade, DNA has been increasingly investigated as an alternative medium for cold data storage, presenting several advantages over standard hard drives such as a higher density, longer lifespan and lower energy consumption. However, such coding ...
2023
, ,
Analytical engines rely on in-memory data caching to avoid storage accesses and provide timely responses by keeping the most frequently accessed data in memory. Purely frequency- and time-based caching decisions, however, are a proxy of the expected query ...