In coordination chemistry, denticity () refers to the number of donor groups in a given ligand that bind to the central metal atom in a coordination complex. In many cases, only one atom in the ligand binds to the metal, so the denticity equals one, and the ligand is said to be monodentate (sometimes called unidentate). Ligands with more than one bonded atom are called polydentate or multidentate. The denticity of a ligand is described with the Greek letter κ ('kappa'). For example, κ6-EDTA describes an EDTA ligand that coordinates through 6 non-contiguous atoms.
Denticity is different from hapticity because hapticity refers exclusively to ligands where the coordinating atoms are contiguous. In these cases the η ('eta') notation is used. Bridging ligands use the μ ('mu') notation.
Polydentate ligands are chelating agents and classified by their denticity. Some atoms cannot form the maximum possible number of bonds a ligand could make. In that case one or more binding sites of the ligand are unused. Such sites can be used to form a bond with another chemical species.
Bidentate (also called didentate) ligands bind with two atoms, an example being ethylenediamine.
Tridentate ligands bind with three atoms, an example being terpyridine. Tridentate ligands usually bind via two kinds of connectivity, called "mer" and "fac." "fac" stands for facial, the donor atoms are arranged on a triangle around one face of the octahedron. "mer" stands for meridian, where the donor atoms are stretched out around one half of the octahedron. Cyclic tridentate ligands such as TACN and 9-ane-S3 bind in a facial manner.
Tetradentate ligands bind with four donor atoms, an example being triethylenetetramine (abbreviated trien). For different central metal geometries there can be different numbers of isomers depending on the ligand's topology and the geometry of the metal center. For octahedral metals, the linear tetradentate trien can bind via three geometries. Tripodal tetradentate ligands, e.g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Phthalocyanine () is a large, aromatic, macrocyclic, organic compound with the formula and is of theoretical or specialized interest in chemical dyes and photoelectricity. It is composed of four isoindole units linked by a ring of nitrogen atoms. = has a two-dimensional geometry and a ring system consisting of 18 π-electrons. The extensive delocalization of the π-electrons affords the molecule useful properties, lending itself to applications in dyes and pigments.
Ethylenediaminetetraacetic acid (EDTA), also called edetic acid after its own abbreviation, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble.
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions.
Covers coordination numbers, common ligands, and preferred geometries in coordination chemistry, emphasizing the spatial distribution between ligands and the role of d⁸ electron configurations.
The work described in this thesis focuses on two classes of luminophores: tetraarylethene-based polymers and Ir(III) complexes with orthometalated ligands. Tetraarylethene-based polymers show aggregation-induced emission (AIE) and they are of interest for ...
EPFL2024
The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often l ...