Rete algorithmThe Rete algorithm (ˈriːtiː , ˈreɪtiː , rarely ˈriːt , rɛˈteɪ ) is a pattern matching algorithm for implementing rule-based systems. The algorithm was developed to efficiently apply many rules or patterns to many objects, or facts, in a knowledge base. It is used to determine which of the system's rules should fire based on its data store, its facts. The Rete algorithm was designed by Charles L. Forgy of Carnegie Mellon University, first published in a working paper in 1974, and later elaborated in his 1979 Ph.
Expert systemIn artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software.
Inference engineIn the field of artificial intelligence, an inference engine is a component of the system that applies logical rules to the knowledge base to deduce new information. The first inference engines were components of expert systems. The typical expert system consisted of a knowledge base and an inference engine. The knowledge base stored facts about the world. The inference engine applies logical rules to the knowledge base and deduced new knowledge. This process would iterate as each new fact in the knowledge base could trigger additional rules in the inference engine.
Forward chainingForward chaining (or forward reasoning) is one of the two main methods of reasoning when using an inference engine and can be described logically as repeated application of modus ponens. Forward chaining is a popular implementation strategy for expert systems, business and production rule systems. The opposite of forward chaining is backward chaining. Forward chaining starts with the available data and uses inference rules to extract more data (from an end user, for example) until a goal is reached.
Knowledge-based systemsA knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.
Knowledge baseA knowledge base (KB) is a set of sentences, each sentence given in a knowledge representation language, with interfaces to tell new sentences and to ask questions about what is known, where either of these interfaces might use inference. It is a technology used to store complex structured data used by a computer system. The initial use of the term was in connection with expert systems, which were the first knowledge-based systems. The original use of the term knowledge base was to describe one of the two sub-systems of an expert system.
Natural language processingNatural language processing (NLP) is an interdisciplinary subfield of linguistics and computer science. It is primarily concerned with processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them.