Summary
Configuration interaction (CI) is a post-Hartree–Fock linear variational method for solving the nonrelativistic Schrödinger equation within the Born–Oppenheimer approximation for a quantum chemical multi-electron system. Mathematically, configuration simply describes the linear combination of Slater determinants used for the wave function. In terms of a specification of orbital occupation (for instance, (1s)2(2s)2(2p)1...), interaction means the mixing (interaction) of different electronic configurations (states). Due to the long CPU time and large memory required for CI calculations, the method is limited to relatively small systems. In contrast to the Hartree–Fock method, in order to account for electron correlation, CI uses a variational wave function that is a linear combination of configuration state functions (CSFs) built from spin orbitals (denoted by the superscript SO), where Ψ is usually the electronic ground state of the system. If the expansion includes all possible CSFs of the appropriate symmetry, then this is a full configuration interaction procedure which exactly solves the electronic Schrödinger equation within the space spanned by the one-particle basis set. The first term in the above expansion is normally the Hartree–Fock determinant. The other CSFs can be characterised by the number of spin orbitals that are swapped with virtual orbitals from the Hartree–Fock determinant. If only one spin orbital differs, we describe this as a single excitation determinant. If two spin orbitals differ it is a double excitation determinant and so on. This is used to limit the number of determinants in the expansion which is called the CI-space. Truncating the CI-space is important to save computational time. For example, the method CID is limited to double excitations only. The method CISD is limited to single and double excitations. Single excitations on their own do not mix with the Hartree–Fock determinant. These methods, CID and CISD, are in many standard programs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
CH-353: Introduction to electronic structure methods
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
PHYS-207(a): General physics : quanta
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
PHYS-463: Computational quantum physics
The numerical simulation of quantum systems plays a central role in modern physics. This course gives an introduction to key simulation approaches, through lectures and practical programming exercises
Show more