L'interaction de configuration (configuration interaction en anglais - CI) est une méthode post-Hartree-Fock linéaire variationnelle pour la résolution de l'équation de Schrödinger non relativiste dans l'approximation de Born-Oppenheimer pour un système chimique quantique multi-électronique. Deux sens sont liés à l'expression d'« interaction de configuration » dans ce contexte. Mathématiquement, le terme de configuration décrit simplement la combinaison linéaire de déterminants de Slater utilisée pour la fonction d'onde. En termes de spécification de l'occupation des orbitales (par exemple 1s2 2s2 2p1...), le mot interaction signifie le mélange (interaction) de différentes configurations électroniques (états). En raison des temps de calculs nécessaires et du matériel requis pour des calculs CI, cette méthode est restreinte à des systèmes relativement petits.
Contrairement à la méthode de Hartree-Fock, la CI utilise pour tenir compte de la corrélation électronique une fonction d'onde variationnelle qui est une combinaison linéaire de fonctions d'état de configuration (configuration state function - CSF) construite à partir des orbitales de spin (indiquées par l'exposant SO) :
dans laquelle Ψ est habituellement l'état fondamental du système. Si le développement inclut toutes les fonctions d'état de configuration de la symétrie appropriée, il existe une démarche de configuration d'interaction complète (Full CI) qui résout exactement l'équation de Schrödinger électronique dans l'espace défini par la base à une particule. Le premier terme dans le développement ci-dessus est normalement le déterminant Hartree-Fock. Les autres CSF peuvent être déterminées par le nombre d'orbitales de spin échangées avec les orbitales virtuelles du déterminant de Hartree-Fock. Si seule une orbitale de spin diffère, on la décrit comme une déterminant d'excitation simple. Si deux orbitales diffèrent, elles sont décrites comme un déterminant d'excitation double et ainsi de suite. On procède ainsi afin de limiter le nombre de déterminants dans le développement.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le champ multi-configurationnel auto-cohérent (Multi-configurational self-consistent field - MCSCF) est une méthode de chimie quantique utilisée pour générer qualitativement des états de référence corrects pour des molécules dans les cas où la méthode de Hartree-Fock et la théorie de la fonctionnelle de la densité ne sont pas pertinentes (comme pour les états fondamentaux moléculaires qui sont dégénérés avec des états excités bas ou dans les situations de rupture de liaisons).
La méthode du cluster couplé, ou théorie du cluster couplé (expression souvent abrégée en « cluster couplé », en anglais coupled cluster) est une technique numérique de description des systèmes à plusieurs corps. Son utilisation la plus répandue est comme méthode ab initio de chimie quantique post-Hartree-Fock en chimie numérique. Il est basé sur la méthode d'orbitale moléculaire Hartree-Fock et lui ajoute un terme de correction afin de prendre en compte la corrélation électronique.
Dans les calculs quantique de structure électronique, le terme de corrélation électronique décrit une part de l'énergie d'interaction entre électrons lié à leur influence mutuelle. Ce terme d’interaction représente la différence entre une solution Hartree Fock (sur une base de déterminants de Slater, antisymétrisée vis-à-vis de l'échange de 2 électrons) et la solution exacte du problème (voir figure ci-dessous). Dans la méthode de Hartree-Fock en chimie quantique, la fonction d'onde antisymétrique est approximée par un seul déterminant de Slater.
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
The numerical simulation of quantum systems plays a central role in modern physics. This course gives an introduction to key simulation approaches,
through lectures and practical programming exercises
Explore le magnétisme dans les nanosciences, y compris la densité des états, les règles de Hund et les configurations orbitales.
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
EPFL2023
Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
EPFL2024
,
Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...