**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Coupled cluster

Summary

Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in nuclear physics. Coupled cluster essentially takes the basic Hartree–Fock molecular orbital method and constructs multi-electron wavefunctions using the exponential cluster operator to account for electron correlation. Some of the most accurate calculations for small to medium-sized molecules use this method.
The method was initially developed by Fritz Coester and Hermann Kümmel in the 1950s for studying nuclear-physics phenomena, but became more frequently used when in 1966 Jiří Čížek (and later together with Josef Paldus) reformulated the method for electron correlation in atoms and molecules. It is now one of the most prevalent methods in quantum chemistry that includes electronic correlation.
CC theory is simply the perturbative variant of the many-electron theory (MET) of Oktay Sinanoğlu, which is the exact (and variational) solution of the many-electron problem, so it was also called "coupled-pair MET (CPMET)". J. Čížek used the correlation function of MET and used Goldstone-type perturbation theory to get the energy expression, while original MET was completely variational. Čížek first developed the linear CPMET and then generalized it to full CPMET in the same work in 1966. He then also performed an application of it on the benzene molecule with Sinanoğlu in the same year. Because MET is somewhat difficult to perform computationally, CC is simpler and thus, in today's computational chemistry, CC is the best variant of MET and gives highly accurate results in comparison to experiments.
Coupled-cluster theory provides the exact solution to the time-independent Schrödinger equation
where is the Hamiltonian of the system, is the exact wavefunction, and E is the exact energy of the ground state.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (17)

Related courses (3)

Related concepts (11)

Related publications (75)

Related units (3)

Related lectures (32)

CH-353: Introduction to electronic structure methods

Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat

CH-431: Physical and computational organic chemistry

This course introduces modern computational electronic structure methods and their broad applications to organic chemistry. It also discusses physical organic concepts to illustrate the stability and

PHYS-754: Lecture series on scientific machine learning

This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.

Configuration interaction

Configuration interaction (CI) is a post-Hartree–Fock linear variational method for solving the nonrelativistic Schrödinger equation within the Born–Oppenheimer approximation for a quantum chemical multi-electron system. Mathematically, configuration simply describes the linear combination of Slater determinants used for the wave function. In terms of a specification of orbital occupation (for instance, (1s)2(2s)2(2p)1...), interaction means the mixing (interaction) of different electronic configurations (states).

Electronic correlation

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons. Within the Hartree–Fock method of quantum chemistry, the antisymmetric wave function is approximated by a single Slater determinant. Exact wave functions, however, cannot generally be expressed as single determinants.

Ab initio quantum chemistry methods

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants.

Q&A Session: Written Exam Details and Electronic Structure Methods

Covers written exam details and electronic structure methods for computational chemistry.

Size Extensivity & Coupled Cluster Theory

Explores size extensivity, coupled cluster theory, exponential form advantages, and energy principles in quantum chemistry.

Electronic Structure Methods

Covers basis set errors, Hartree-Fock methods, electron correlation, configuration interaction, and composite approaches in computational chemistry.

Singlet fission (SF) is a multiexciton-generating process whereby an excited state singlet (S1) is converted into two lower-energy triplets (T1). The inclusion of a SF-capable material into a photovoltaic device offers the potential for the absorption of p ...

,

We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...

We carry out a weakly nonlinear analysis of the centrifugal instability for a columnar vortex in a rotating fluid, and compare the results to those of the semi-linear model derived empirically by Yim et al. (J. Fluid Mech., vol. 897, 2020, A34). The asympt ...