In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material. Most grain boundaries are preferred sites for the onset of corrosion and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep. On the other hand, grain boundaries disrupt the motion of dislocations through a material, so reducing crystallite size is a common way to improve mechanical strength, as described by the Hall–Petch relationship.
It is convenient to categorize grain boundaries according to the extent of misorientation between the two grains. Low-angle grain boundaries (LAGB) or subgrain boundaries are those with a misorientation less than about 15 degrees. Generally speaking they are composed of an array of dislocations and their properties and structure are a function of the misorientation. In contrast the properties of high-angle grain boundaries, whose misorientation is greater than about 15 degrees (the transition angle varies from 10–15 degrees depending on the material), are normally found to be independent of the misorientation. However, there are 'special boundaries' at particular orientations whose interfacial energies are markedly lower than those of general high-angle grain boundaries.
The simplest boundary is that of a tilt boundary where the rotation axis is parallel to the boundary plane. This boundary can be conceived as forming from a single, contiguous crystallite or grain which is gradually bent by some external force. The energy associated with the elastic bending of the lattice can be reduced by inserting a dislocation, which is essentially a half-plane of atoms that act like a wedge, that creates a permanent misorientation between the two sides. As the grain is bent further, more and more dislocations must be introduced to accommodate the deformation resulting in a growing wall of dislocations – a low-angle boundary.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling. In annealing, atoms migrate in the crystal lattice and the number of dislocations decreases, leading to a change in ductility and hardness.
A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. The orientation of crystallites can be random with no preferred direction, called random texture, or directed, possibly due to growth and processing conditions.
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation.
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Explores coherent interfaces in materials science, focusing on the Cahn Hillard model and the behavior of grain boundaries.
Explores symmetric tilt grain boundaries, twist grain boundaries, and the atomistic view of tilt grain boundaries.
Explores configurational forces in materials, emphasizing equilibrium conditions and defect interactions.
The activation of prismatic slip in Mg and its alloys can be beneficial for deformation and forming. Experiments show that addition of Zn and Al solutes have a softening effect at/below room temperature, attributed to solutes facilitating basal-prism-basal ...
AbstractThe degradation of metal interconnects (ICs) in Solid Oxide Cells (SOCs) primarily results from chromium (Cr) oxide scale growth on stainless-steel substrates, causing ohmic loss and air-side electrode poisoning by Cr. This thesis addresses these c ...
EPFL2024
, , , , , , , , , ,
Surface passivation has been widely employed to suppress non-radiative charge recombination and prevent interfacial charge accumulation in perovskite photovoltaics. In this report, carbazole modified with ammonium iodide connected via alkyl chains of diffe ...