**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Central moment

Summary

In probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized. Central moments are used in preference to ordinary moments, computed in terms of deviations from the mean instead of from zero, because the higher-order central moments relate only to the spread and shape of the distribution, rather than also to its location.
Sets of central moments can be defined for both univariate and multivariate distributions.
The nth moment about the mean (or nth central moment) of a real-valued random variable X is the quantity μn := E[(X − E[X])n], where E is the expectation operator. For a continuous univariate probability distribution with probability density function f(x), the nth moment about the mean μ is
For random variables that have no mean, such as the Cauchy distribution, central moments are not defined.
The first few central moments have intuitive interpretations:
The "zeroth" central moment μ0 is 1.
The first central moment μ1 is 0 (not to be confused with the first raw moment or the expected value μ).
The second central moment μ2 is called the variance, and is usually denoted σ2, where σ represents the standard deviation.
The third and fourth central moments are used to define the standardized moments which are used to define skewness and kurtosis, respectively.
The nth central moment is translation-invariant, i.e. for any random variable X and any constant c, we have
For all n, the nth central moment is homogeneous of degree n:
Only for n such that n equals 1, 2, or 3 do we have an additivity property for random variables X and Y that are independent:
provided n ∈ {1, 2, 3}.
A related functional that shares the translation-invariance and homogeneity properties with the nth central moment, but continues to have this additivity property even when n ≥ 4 is the nth cumulant κn(X).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (16)

Related courses (7)

Related publications (49)

Variance

In probability theory and statistics, variance is the squared deviation from the mean of a random variable. The variance is also often defined as the square of the standard deviation. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

Moment (mathematics)

In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.

Probability distribution

In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.

COM-300: Stochastic models in communication

L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i

EE-566: Adaptation and learning

In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.

MATH-432: Probability theory

The course is based on Durrett's text book
Probability: Theory and Examples.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

Related people (17)

Related units (1)

Related lectures (32)

Distributed Forces: Calculations and Analysis

Explores the analysis of distributed forces, including calculations, replacements, reactions, and edge conditions.

Central Limit Theorem

Covers the Central Limit Theorem and its application to random variables, proving convergence to a normal distribution.

Plasma Distribution Functions

Covers the concept of moments of the distribution function in plasma physics and their relation to fluid dynamics.

As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...

Kathryn Hess Bellwald, Lida Kanari, Adélie Eliane Garin

In this paper we consider two aspects of the inverse problem of how to construct merge trees realizing a given barcode. Much of our investigation exploits a recently discovered connection between the symmetric group and barcodes in general position, based ...

2024Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer

The hydrodynamic flow-like behavior of charged hadrons in high-energy lead-lead collisions is studied through multiparticle correlations. The elliptic anisotropy values based on different orders of multiparticle cumulants, v(2){2k}, are measured up to the ...