Colored gold is the name given to any gold that has been treated using techniques to change its natural color. Pure gold is slightly reddish yellow in color, but colored gold can come in a variety of different colors by alloying it with different elements. Colored golds can be classified in three groups: Alloys with silver and copper in various proportions, producing white, yellow, green and red golds. These are typically malleable alloys. Intermetallic compounds, producing blue and purple golds, as well as other colors. These are typically brittle, but can be used as gems and inlays. Surface treatments, such as oxide layers. Pure 100% (in practice, 99.9% or better) gold is 24 karat by definition, so all colored golds are less pure than this, commonly 18K (75%), 14K (58.5%), 10K (41.6%), or 9K (37.5%). White gold is an alloy of gold and at least one white metal (usually nickel, silver, or palladium). Like yellow gold, the purity of white gold is given in karats. White gold's properties vary depending on the metals used and their proportions. As a result, white gold alloys can be used for many different purposes: while a nickel alloy is hard and strong, and therefore good for rings and pins; gold–palladium alloys are soft, pliable, and good for white-gold gemstone settings, sometimes with other metals, like copper, silver, and platinum, added for weight and durability (although this often requires specialized goldsmiths). The term white gold is used very loosely in the industry to describe karat gold alloys with a whitish hue. The word white covers a broad range of colors that borders or overlaps pale yellow, tinted brown, and even very pale rose. The jewelry industry often conceals these off-white colors by rhodium plating; thus it is a common misconception that the color of the rhodium plating, which is seen on many commercial pieces, is the actual color of white gold. A common white gold formulation consists of 90% wt. gold and 10% wt. nickel. Copper can be added to increase malleability.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
MSE-234: Mechanical behaviour of materials
Ce cours est une introduction au comportement mécanique, à l'élaboration, à la structure et au cycle de vie des grandes classes de matériaux de structure (métaux, polymères, céramiques et composites)
Show more
Related publications (139)
Related concepts (14)
Heavy metals
Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context. In metallurgy, for example, a heavy metal may be defined on the basis of density, whereas in physics the distinguishing criterion might be atomic number, while a chemist would likely be more concerned with chemical behaviour. More specific definitions have been published, none of which have been widely accepted.
Corinthian bronze
Corinthian bronze, also named Corinthian brass or aes Corinthiacum, was a highly valuable metal alloy in classical antiquity. It is thought to be an alloy of copper with gold or silver (or both), although it has also been contended that it was simply a very high grade of bronze, or a kind of bronze that was manufactured in Corinth. It is referred to in various ancient texts, but no certain examples of Corinthian bronze exist today.
Plating
Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.